Effect of Cenosphere Fillers on Mechanical Strength and Abrasive Wear Resistance of Carbon–Glass Polyester Composites
Abstract
:Highlights
- Cenosphere-filled carbon–glass fabric-reinforced polyester composites exhibit a 30–50% reduction in wear rate compared to unfilled composites;
- The addition of cenospheres improves the mechanical properties of the composites, with a 20–30% increase in tensile strength and stiffness.
- The optimal use of cenospheres as fillers in hybrid polymer composites can enhance their tribological and mechanical performance, leading to improved durability and lifespan in industrial applications.
- The development of cenosphere-filled carbon–glass fabric-reinforced polyester composites can address the growing demand for advanced materials in industries such as aerospace, automotive, and construction.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mechanical Characterization
2.2.1. Tensile Test
2.2.2. Hardness Test
2.2.3. Charpy Impact Test
2.2.4. Abrasion Test
3. Results and Discussion
3.1. Mechanical Properties
3.2. Abrasive Wear Behavior
3.3. Specific Wear Rate (Ks)
3.4. Interdependence Between Wear and Mechanical Properties
3.5. Worn out Morphology Analysis
4. Conclusions
- ➢
- The addition of cenospheres reduces wear volume and specific wear rate in the composites. The current investigation has yielded the following outcomes:
- ➢
- Fully dense composites encompassing bidirectional carbon–glass fabric-reinforced polyester and cenosphere-filled carbon–glass fabric-reinforced polyester were successfully fabricated. Cenosphere-filled carbon–glass fabric-reinforced polyester composites proved to have better tensile strength and modulus, in addition to decreased elongation at break, when compared with unfilled carbon–glass fabric-reinforced polyester composites;
- ➢
- The composite containing 10 wt.% cenospheres (C6-CN-10) composite demonstrated enhanced tensile strength and modulus, accompanied by a relatively minimal reduction in elongation at break compared to unfilled and lower-filled composites;
- ➢
- The inclusion of silica as an abrasive material considerably lowered the specific wear rate of the composites.
- ➢
- Cenospheres proved to be effective fillers, enhancing both abrasion resistance and mechanical properties. These improvements make the composites well-suited for applications involving abrasive wear.
- ➢
- Cenospheres act as effective filler materials, improving the abrasion resistance and mechanical properties of carbon–glass fabric-reinforced polyester composite samples. Therefore, adding more cenosphere to carbon–glass fabric-reinforced polyester composites is advantageous for applications that involve abrasive wear conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwartz, M.M. Composite Materials Handbook; McGraw-Hill: New York, NY, USA, 1992. [Google Scholar]
- Maiti, S.N.; Lopez, B.H. Tensile properties of polypropylene/kaolin composites. J. Appl. Polym. Sci. 1992, 44, 353–360. [Google Scholar] [CrossRef]
- Hutchings, I.M. Tribology: Friction and Wear of Engineering Materials; CRC Press: London, UK, 1992; pp. 156–164. [Google Scholar]
- El-Tayeb, N.S.M.; Yousif, B.F.; Yap, T.C. Tribological studies of polyester reinforced with CSM 450 R glass fiber sliding against smooth stainless steel counter face. Wear 2006, 261, 443–452. [Google Scholar] [CrossRef]
- El-Tayeb, N.S.M.; Yousif, B.F. Evaluation of glass fibre reinforced polymer composites for multi-pass abrasive wear applications. Wear 2007, 262, 1140–1151. [Google Scholar] [CrossRef]
- Pihitili, H.; Tosun, N. Effect of load and speed on the wear behaviour of woven glass fabrics and armid fibre reinforced composites. Wear 2002, 252, 979–984. [Google Scholar] [CrossRef]
- Bhawani, S.T.; Michael, J.F. Tribological behavior of uni-directional graphite epoxy and carbon-PEEK composite. Wear 1993, 162, 385–396. [Google Scholar]
- Mody, P.B.; Chou, T.W.; Friedrich, K. Effect of testing conditions and microstructure on the sliding wear of graphite fiber/PEEK matrix composites. J. Mater. Sci. 1988, 23, 4319–4330. [Google Scholar] [CrossRef]
- Tsukizoe, T.; Ohmae, N. Wear mechanism of unidirectionally oriented fiber reinforced plastics. J. Lubr. Technol. 1977, 99, 401–407. [Google Scholar] [CrossRef]
- Suresha, B.; Chandramohan, G.; Siddaramaiah; Shivakumar, K.N.; Ismail, M. Mechanical and three-body abrasive wear behaviour of three dimensional glass-fabric reinforced vinyl ester composite. Mater. Sci. Eng. A 2008, 480, 573–579. [Google Scholar] [CrossRef]
- Suresha, B.; Chandramohan, G. Three-body abrasive wear behaviour of particulate filled glass–vinyl ester composites. J. Mater. Process Technol. 2008, 200, 306–311. [Google Scholar] [CrossRef]
- Devi, M.S.; Murugesan, V.; Rengaraj, K.; Anand, P. Utilization of fly ash as filler for unsaturated polyester resin. J. Appl. Polym. Sci. 1998, 69, 1385–1391. [Google Scholar] [CrossRef]
- Maher, M.H.; Balaguru, P.N. Properties of flowable high-volume fly ash-cement composite. J. Mater. Civ. Eng. 1993, 5, 212–225. [Google Scholar] [CrossRef]
- Biswas, S.; Satpathy, A. Tribo-performance analysis of red mud filled glass epoxy composites using Taguchi experimental design. Mater. Des. 2009, 30, 2841–2853. [Google Scholar] [CrossRef]
- Suresha, B.; Chandramohan, G.; Siddaramaiah; Jayaraju, T. Influence of cenosphere filler additions on three body abrasive wear behavior of glass fiber-reinforced epoxy composites. Polym. Sci. 2008, 29, 307–312. [Google Scholar] [CrossRef]
- Cirino, M.; Friedrich, K.; Pipes, R.B. The abrasive wear behavior of continuous fiber polymer composites. J. Mater. Sci. 1987, 22, 2481–2492. [Google Scholar] [CrossRef]
- Cirino, M.; Friedrich, K.; Pipes, R.B. Evaluation of polymer composites for sliding and abrasive wear applications. Composites 1988, 19, 383–392. [Google Scholar] [CrossRef]
- Cenna, A.; Doyle, J.; Page, N.; Beehag, A.; Dastoor, P. Wear mechanisms in polymer matrix composite abraded by bulk solids. Wear 2000, 240, 207–214. [Google Scholar] [CrossRef]
- Hao, W.; Liu, Y.; Neagu, A.; Bacsik, Z.; Tai, C.W.; Shen, Z.; Hedin, N. Core-shell and hollow particles of carbon and sic prepared from hydrochar. Materials 2019, 12, 1835. [Google Scholar] [CrossRef]
- Singh, S. Chemical Composition of Cenosphere. Materials 2020, 13, 234. [Google Scholar]
- Chand, N.; Naik, A.M.; Neogi, S. Three-body abrasive wear of short glass fiber polyester composite. Wear 2000, 242, 38–46. [Google Scholar] [CrossRef]
- Satapathy, A.; Patnaik, A.; Biswas, S. Investigations on three-body abrasive wear and mechanical properties of particulate filled glass epoxy composites. Malaysian Polym. J. 2010, 5, 37–48. [Google Scholar]
- Alam, S.; Habib, F.; Irfan, M. Effect of orientation of glass fiber on mechanical properties of GRP composites. J. Chem. Soc. Pak. 2010, 32, 265–269. [Google Scholar]
- Liu, J.; He, L.; Yang, D.; Liang, J.; Zhao, R.; Wang, Z.; Li, X.; Chen, Z. Effects of Carbon Fiber Content on the Crystallization and Rheological Properties of Carbon Fiber-Reinforced Polyamide 6. Polymers 2024, 16, 2395. [Google Scholar] [CrossRef]
- Khakalo, S.; Niiranen, J. Lattice structures as thermoelastic strain gradient metamaterials: Evidence from full-field simulations and applications to functionally step-wise-graded beams. Compos. Part B Eng. 2019, 177, 107224. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, M.; Shang, C.; Saba, F.; Yu, J. Mechanical properties of carbon fiber-reinforced polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2020, 130, 105834. [Google Scholar] [CrossRef]
- Berton, T.; Najafi, F.; Singh, C.V. Development and implementation of a multi-scale model for matrix micro-cracking prediction in composite structures subjected to low velocity impact. Compos. Part B Eng. 2019, 168, 140–151. [Google Scholar] [CrossRef]
- Lu, W.; Komvopoulos, K. Nano tribological and nano mechanical properties of ultrathin amorphous carbon films synthesized by radio frequency sputtering. J. Tribol. 2001, 123, 641–650. [Google Scholar] [CrossRef]
- Lancaster, J.K. Friction and wear. In Polymer Science: A Material Science Hand Book; Jenkins, A.D., Ed.; Elsevier: Amsterdam, The Netherlands, 1972; pp. 959–1046. [Google Scholar]
- Zhang, H.S.; Komvopoulos, K. Direct-current cathodic vacuum arc system with magneticfield mechanism for plasma stabilization. Rev. Sci. Instrum. 2008, 79, 073905. [Google Scholar] [CrossRef]
- Suresha, B.; Chandramohan, G.; Kishore; Sampathkumaran, P.; Seetharamu, S. Mechanical and three-body abrasive wear behaviour of SiC filled glass-epoxy composites. Polym. Compos. 2008, 29, 1020–1025. [Google Scholar] [CrossRef]
- Ratner, S.B.; Farberova, I.I.; Radyukevich, O.V.; Lure, E.G. Correlations between wear resistance and other mechanical properties. Sov. Plast. 1964, 7, 37–45. [Google Scholar]
Sl No | Properties | S-Glass Fiber | Carbon Fabric | Cenosphere |
---|---|---|---|---|
1 | Density(g/cm3) | 2.49 | 1.79 | 0.37 |
2 | Compressive Strength (MPa) | -- | -- | 23.56 |
3 | Hardness(Mohs) | -- | -- | 5.67 |
4 | Melting Point(°C) | --- | -- | 1350 |
5 | Particle Size(nm) | ---- | -- | 5–70 |
6 | Tensile Strength(MPa) | 4600 | 5407 | -- |
7 | Elongation (%) | 5.5 | 1.75 | ----- |
SiO2 | Al2O3 | K2O | Fe2O3 | TiO2 | MgO | Na2O | CaO |
---|---|---|---|---|---|---|---|
55.4 | 31.1 | 3.2 | 4.13 | 1.3 | 2.3 | 1.2 | 1.4 |
Composites Sample Code | GF wt.% | CF wt.% | Resin wt.% |
---|---|---|---|
C1 | 0 | 50 | 50 |
C2 | 50 | 0 | 50 |
C3 | 50 | 2.5 | 47.5 |
C4 | 50 | 5 | 45 |
C5 | 50 | 7.5 | 42.5 |
C6 | 50 | 10 | 40 |
C7 | 50 | 12.5 | 37.5 |
Composites Code | GF wt.% | CF wt.% | Polyester Resin wt.% | Cenosphere wt.% |
---|---|---|---|---|
C6-CN-2.5 | 50 | 10 | 37.5 | 2.5 |
C6-CN-5 | 50 | 10 | 35 | 5 |
C6-N-7.5 | 50 | 10 | 32.5 | 7.5 |
C6-CN-10 | 50 | 10 | 30 | 10 |
C6-CN-12.5 | 50 | 10 | 27.5 | 12.5 |
a. | ||||||
Composite | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Std. Deviation |
C1 | 532 | 560 | 521 | 524 | 526 | ±15.8 |
C2 | 370 | 382 | 359 | 352 | 378 | ±12.5 |
C3 | 236 | 241 | 232 | 217 | 238 | ±9.4 |
C4 | 241 | 248 | 245 | 247 | 252 | ±4.0 |
C5 | 252 | 260 | 246 | 260 | 275 | ±10.8 |
C6 | 276 | 274 | 272 | 250 | 246 | ±14.3 |
C7 | 242 | 248 | 245 | 232 | 241 | ±6.0 |
b. | ||||||
Composite | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Std. Deviation |
C1 | 129 | 131 | 126 | 127 | 132 | ±2.5 |
C2 | 92 | 96 | 92 | 87 | 94 | ±3.3 |
C3 | 72 | 74 | 78 | 76 | 71 | ±2.8 |
C4 | 86 | 82 | 88 | 86 | 89 | ±2.6 |
C5 | 94 | 92 | 91 | 88 | 96 | ±3.0 |
C6 | 94 | 96 | 94 | 100 | 97 | ±2.4 |
C7 | 94 | 86 | 97 | 92 | 89 | ±4.2 |
c. | ||||||
Composite | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Std. Deviation |
C1 | 21.44 | 21.48 | 21.52 | 21.54 | 21.52 | ±0.04 |
C2 | 21.24 | 21.12 | 21.16 | 21.1 | 21.28 | ±0.08 |
C3 | 21.04 | 20.92 | 20.88 | 21.04 | 20.92 | ±0.07 |
C4 | 21.12 | 21.08 | 21.16 | 20.98 | 20.96 | ±0.09 |
C5 | 21.08 | 21.04 | 21.2 | 21.06 | 21.12 | ±0.06 |
C6 | 21.12 | 21.12 | 21.16 | 21.3 | 21.2 | ±0.07 |
C7 | 21.04 | 20.96 | 20.96 | 21.06 | 21.08 | ±0.06 |
a. | ||||||
Composite | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Std. Deviation |
C6-CN-2.5 | 296 | 303 | 308 | 312 | 298 | ±6.7 |
C6-CN-5 | 322 | 320 | 316 | 318 | 315 | ±2.8 |
C6-N-7.5 | 342 | 338 | 336 | 334 | 344 | ±4.1 |
C6-CN-10 | 362 | 358 | 346 | 342 | 352 | ±8.2 |
C6-CN-12.5 | 332 | 330 | 334 | 328 | 334 | ±2.6 |
b. | ||||||
Composite | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Std. Deviation |
C6-CN-2.5 | 94 | 88 | 86 | 82 | 87 | ±4.3 |
C6-CN-5 | 106 | 102 | 94 | 90 | 96 | ±6.3 |
C6-N-7.5 | 110 | 96 | 101 | 92 | 108 | ±7.6 |
C6-CN-10 | 96 | 120 | 113 | 115 | 124 | ±10.7 |
C6-CN-12.5 | 118 | 106 | 98 | 102 | 104 | ±7.5 |
c. | ||||||
Composite | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Std. Deviation |
C6-CN-2.5 | 21.16 | 20.96 | 20.88 | 20.92 | 21.08 | ±0.15 |
C6-CN-5 | 21.2 | 21.16 | 21.12 | 21.04 | 21.08 | ±0.06 |
C6-N-7.5 | 21.32 | 21.24 | 21.16 | 21.08 | 21.12 | ±0.1 |
C6-CN-10 | 21.32 | 21.44 | 21.24 | 21.2 | 21.12 | ±0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulikeshi, K.H.; Goudar, D.M.; Kurahatti, R.V.; Pinto, D.G. Effect of Cenosphere Fillers on Mechanical Strength and Abrasive Wear Resistance of Carbon–Glass Polyester Composites. Fibers 2025, 13, 46. https://doi.org/10.3390/fib13040046
Pulikeshi KH, Goudar DM, Kurahatti RV, Pinto DG. Effect of Cenosphere Fillers on Mechanical Strength and Abrasive Wear Resistance of Carbon–Glass Polyester Composites. Fibers. 2025; 13(4):46. https://doi.org/10.3390/fib13040046
Chicago/Turabian StylePulikeshi, K. H., Dayanand M. Goudar, R. V. Kurahatti, and Deesy G. Pinto. 2025. "Effect of Cenosphere Fillers on Mechanical Strength and Abrasive Wear Resistance of Carbon–Glass Polyester Composites" Fibers 13, no. 4: 46. https://doi.org/10.3390/fib13040046
APA StylePulikeshi, K. H., Goudar, D. M., Kurahatti, R. V., & Pinto, D. G. (2025). Effect of Cenosphere Fillers on Mechanical Strength and Abrasive Wear Resistance of Carbon–Glass Polyester Composites. Fibers, 13(4), 46. https://doi.org/10.3390/fib13040046