Properties of Composites from Curauá Fibers and High-Density Bio-Based Polyethylene: The Influence of Processing Methods
Abstract
:Highlights
- The composites of bio-based high-density polyethylene (HDBPE), curaua fibers, and plant-based oils exhibited better properties when processed with a twin-screw extruder and injection molding rather than an internal mixer and thermopressing.
- The flexural properties and impact resistance demonstrated that castor oil, in comparison to canola oil and epoxidized soybean oil, performed better as a compatibilizer between hydrophilic fibers and a hydrophobic matrix.
- The optimal conditions identified for producing composites using HDBPE, curaua fibers, and plant-based oils are applicable to a range of other lignocellulosic fiber and thermoplastic polymer matrices.
- The methodologies and results outlined in this research can potentially drive the scalable fabrication of composites using bio-derived matrices, plant-based oils, and plant fibers.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composites Preparation
2.2.1. Internal Mixer/Thermopressing Molding
2.2.2. Intermeshing Twin-Screw Extruder/Injection Molding
2.3. Composites Characterization
3. Results and Discussion
3.1. Thermal Analysis
3.2. Mechanical Properties and SEM Micrographs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karakaya, N.; Papila, M.; Özkoç, G. Overmolded hybrid composites of polyamide-6 on continuous carbon and glass fiber/epoxy composites: ‘An assessment of the interface’. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105771. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Z.; Kızıltaş, O.; Zhong, L.; Pang, X.; Wang, F.; Zhu, Y.; Ma, W.; Lv, Y. Carbon fiber/poly ether ether ketone composites modified with graphene for electro-thermal deicing applications. Compos. Sci. Technol. 2020, 192, 108117. [Google Scholar] [CrossRef]
- Palmeri, F.; Laurenzi, S. Relaxation Modeling of Unidirectional Carbon Fiber Reinforced Polymer Composites Before and After UV-C Exposure. Fibers 2024, 12, 110. [Google Scholar] [CrossRef]
- Szatkowski, P.; Twaróg, R. Thermal Recycling Process of Carbon Fibers from Composite Scrap—Characterization of Pyrolysis Conditions and Determination of the Quality of Recovered Fibers. Fibers 2024, 12, 68. [Google Scholar] [CrossRef]
- Ramakrishnan, K.R.; Le Moigne, N.; De Almeida, O.; Regazzi, A.; Corn, S. Optimized manufacturing of thermoplastic biocomposites by fast induction-heated compression moulding: Influence of processing parameters on microstructure development and mechanical behaviour. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105493. [Google Scholar] [CrossRef]
- Woigk, W.; Fuentes, C.A.; Rion, J.; Hegemann, D.; Vuure, A.W.V.; Kramer, E.; Dransfeld, C.; Masania, K. Fabrication of flax fibre-reinforced cellulose propionate thermoplastic composites. Compos. Sci. Technol. 2019, 183, 107791. [Google Scholar] [CrossRef]
- Fourati, Y.; Magnin, A.; Putaux, J.L.; Boufi, S. One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers. Carbohydr. Polym. 2020, 229, 115554. [Google Scholar] [CrossRef]
- Zamora-Mendoza, L.; Gushque, F.; Yanez, S.; Jara, N.; Álvarez-Barreto, J.F.; Zamora-Ledezma, C.; Dahoumane, S.A.; Alexis, F. Plant Fibers as Composite Reinforcements for Biomedical Applications. Bioengineering 2023, 10, 804. [Google Scholar] [CrossRef]
- Frollini, E.; Bartolucci, N.; Sisti, L.; Celli, A. Biocomposites based on poly(butylene succinate) and curaua: Mechanical and morphological properties. Polym. Test. 2015, 45, 168–173. [Google Scholar] [CrossRef]
- Costa, U.O.; Nascimento, L.F.C.; Garcia, J.M.; Bezerra, W.B.A.; Monteiro, S.N. Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. J. Mater. Res. Technol. 2019, 9, 373–382. [Google Scholar] [CrossRef]
- Manimaran, P.; Saravanan, S.P.; Sanjay, M.R.; Jawaid, M.; Siengchin, S.; Fiore, V. New Lignocellulosic Aristida adscensionis Fibers as Novel Reinforcement for Composite Materials: Extraction, Characterization and Weibull Distribution Analysis. J. Polym. Environ. 2020, 28, 803–811. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Asim, M. Accelerated weathering and soil burial effect on biodegradability, colour and texture of coir/pineapple leaf fibres/PLA biocomposites. Polymers 2020, 12, 458. [Google Scholar] [CrossRef] [PubMed]
- Bessa, W.; Trache, D.; Moulai, S.-A.; Tarchoun, A.F.; Abdelaziz, A.; Hamidon, T.S.; Hussin, M.H. Polybenzoxazine/Epoxy Copolymer Reinforced with Phosphorylated Microcrystalline Cellulose: Curing Behavior, Thermal, and Flame Retardancy Properties. Fibers 2024, 12, 61. [Google Scholar] [CrossRef]
- Da Silva, C.G.; Queiroz, B.G.; Frollini, E. Lignocellulosic biomass: Synthesis of lignophenolic thermosets with simultaneous formation of composites reinforced by sugarcane bagasse fibers. Biomass Convers. Biorefinery 2024, 14, 29503–29514. [Google Scholar] [CrossRef]
- Mahmud, S.; Hasan, K.M.F.; Jahid, M.A.; Mohiuddin, K.; Zhang, R.; Zhu, J. Comprehensive review on plant fiber-reinforced polymeric biocomposites. J. Mater. Sci. 2021, 56, 7231–7264. [Google Scholar] [CrossRef]
- Castro, D.O.; Marini, J.; Ruvolo-Filho, A.; Frollini, E. Preparation and Characterization of Biocomposites Based on Curaua Fibers, High-density Biopolyethylene (HDBPE) and Liquid Hydroxylated Polybutadiene (LHPB). Polímeros 2013, 23, 65–73. [Google Scholar] [CrossRef]
- Castro, D.O.; Passador, F.; Ruvolo-Filho, A.C.; Frollini, E. Use of castor and canola oils in “biopolyethylene” curauá fiber composites. Compos. Part A Appl. Sci. Manuf. 2017, 95, 22–30. [Google Scholar] [CrossRef]
- Da Silva, A.O.; de Castro Monsores, K.G.; de Sant’ Ana, O.S.; Weber, R.P.; Monteiro, S.N.; Vital, H.C. Influence of gamma and ultraviolet radiation on the mechanical behavior of a hybrid polyester composite reinforced with curaua mat and aramid fabric. J. Mater. Res. Technol. 2019, 9, 394–403. [Google Scholar] [CrossRef]
- Premkumar, T.; Siva, I.; Neis, P.D.; Amico, S.C.; Ferreira, F.F.; Jappes, J.T.W. Experimental design and theoretical analysis on the various tribological responses of curauá/polyester composites. Mater. Res. Express 2019, 6, 125337. [Google Scholar] [CrossRef]
- García del Pino, G.; Kieling, A.C.; Bezazi, A.; Boumediri, H.; de Souza, J.F.R.; Díaz, F.V.; Rivera, J.L.V.; Dehaini, J.; Panzera, T.H. Hybrid Polyester Composites Reinforced with Curauá Fibres and Nanoclays. Fibers Polym. 2020, 1, 399–406. [Google Scholar] [CrossRef]
- Zah, R.; Hischier, R.; Leão, A.L.; Braun, I. Curauá fibers in the automobile industry—A sustainability assessment. J. Clean. Prod. 2007, 15, 1032–1040. [Google Scholar] [CrossRef]
- Araujo, J.R.; Mano, B.; Teixeira, G.M.; Spinacé, M.A.S.; De Paoli, M.-A. Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Compos. Sci. Technol. 2010, 70, 1637–1644. [Google Scholar] [CrossRef]
- Tarazona, N.A.; Machatschek, R.; Balcucho, J.; Lendlein, A.; Castro-Mayorga, J.L.; Saldarriaga, J.F. Opportunities and challenges for integrating the development of sustainable polymer materials within an international circular (bio)economy concept. MRS Energy Sustain. 2022, 9, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Quiles-Carrillo, L.; Montanes, N.; Jorda-Vilaplana, A.; Balart, R.; Torres-Giner, S. A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. J. Appl. Polym. Sci. 2019, 136, 47396. [Google Scholar] [CrossRef]
- European Environment Agency|Circularity Metrics Lab. Global Bio-Based Plastics Production Capacity. Available online: https://www.eea.europa.eu/en/circularity/sectoral-modules/plastics/global-bio-based-plastics-production-capacity (accessed on 6 February 2025).
- Okolie, O.; Kumar, A.; Edwards, C.; Lawton, L.A.; Oke, A.; McDonald, S.; Thakur, V.K.; Njuguna, J. Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation. J. Compos. Sci. 2023, 7, 213. [Google Scholar] [CrossRef]
- Singh, D.K.; Vaidya, A.; Thomas, V.; Theodore, M.; Kore, S.; Vaidya, U. Finite Element Modeling of the Fiber-Matrix Interface in Polymer Composites. J. Compos. Sci. 2020, 4, 58. [Google Scholar] [CrossRef]
- Motta de Castro, E.; Tabei, A.; Cline, D.B.; Haque, E.; Chambers, L.B.; Song, K.; Perez, L.; Kalaitzidou, K.; Asadi, A. New insights in understanding the fiber-matrix interface and its reinforcement behavior using single fiber fragmentation data. Adv. Compos. Hybrid Mater. 2025, 8, 5. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Tzounis, L.; Pongwisuthiruchte, A.; Potiyaraj, P. Effect of Various Surface Treatments on the Performance of Jute Fibers Filled Natural Rubber (NR) Composites. Polymers 2020, 12, 369. [Google Scholar] [CrossRef]
- Vijay, R.; Manoharan, S.; Arjun, S.; Vinod, A. Characterization of Silane-Treated and Untreated Natural Fibers from Stem of Leucas Aspera. J. Nat. Fibers 2020, 18, 1957–1973. [Google Scholar] [CrossRef]
- Werchefani, M.; Lacoste, C.; Elloumi, A.; Belghith, H.; Gargouri, A.; Bradai, C. Enzyme-treated Tunisian Alfa fibers reinforced polylactic acid composites: An investigation in morphological, thermal, mechanical, and water resistance properties. Polym. Compos. 2020, 41, 1721–1735. [Google Scholar] [CrossRef]
- Barbarić-Mikočević, Ž.; Bates, I.; Rudolf, M.; Plazonić, I. The Influence of Ultraviolet Radiation on the Surface Roughness of Prints Made on Papers with Natural and Bleached Hemp Fibers. Fibers 2024, 12, 112. [Google Scholar] [CrossRef]
- Alipour, A.; Jayaraman, K. Performance of Flax/Epoxy Composites Made from Fabrics of Different Structures. Fibers 2024, 12, 34. [Google Scholar] [CrossRef]
- Santos, R.P.O.; Ferracini, T.V.; Innocentini, M.D.M.; Frollini, E.; Savastano Junior, H. Composite electrospun membranes from cellulose nanocrystals, castor oil, and poly(ethylene terephthalate): Air permeability, thermal stability, and other relevant properties. Int. J. Biol. Macromol. 2025, 287, 138437. [Google Scholar]
- Barbalho, G.H.A.; Nascimento, J.J.S.; da Silva, L.B.; Gomez, R.S.; de Farias, D.O.; Diniz, D.D.S.; Santos, R.S.; de Figueiredo, M.J.; de Lima, A.G.B. Bio-Polyethylene Composites Based on Sugar Cane and Curauá Fiber: An Experimental Study. Polymers 2023, 15, 1369. [Google Scholar] [CrossRef]
- Hyvärinen, M.; Jabeen, R.; Kärki, T. The Modelling of Extrusion Processes for Polymers—A Review. Polymers 2020, 12, 1306. [Google Scholar] [CrossRef]
- Karaki, A.; Hammoud, A.; Masad, E.; Khraisheh, M.; Abdala, A.; Ouederni, M. A review on material extrusion (MEX) of polyethylene—Challenges, opportunities, and future prospects. Polymer 2024, 307, 127333. [Google Scholar] [CrossRef]
- Valášek, P.; Ruggiero, A.; Müller, M. Experimental description of strength and tribological characteristic of EFB oil palm fibres/epoxy composites with technologically undemanding preparation. Compos. Part B Eng. 2017, 122, 79–88. [Google Scholar] [CrossRef]
- Hamdi, S.E.; Delisée, C.; Malvestio, J.; Beaugrand, J.; Berzin, F. Monitoring the Diameter Changes of Flax Fibre Elements during Twin Screw Extrusion Using X-Ray Computed Micro-Tomography. J. Nat. Fibers 2018, 17, 1159–1170. [Google Scholar] [CrossRef]
- Nematollahi, M.; Karevan, M.; Fallah, M.; Farzin, M. Experimental and Numerical Study of the Critical Length of Short Kenaf Fiber Reinforced Polypropylene Composites. Fibers Polym. 2020, 21, 821–828. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, C.; Zuo, X.; Román, A.J.; Nie, Y.; Su, D.-X.; Turng, L.-S.; Osswald, T.A.; Cheng, G.; Chen, W. Effective mechanical properties of injection-molded short fiber reinforced PEEK composites using periodic homogenization. Adv. Compos. Hybrid Mater. 2022, 5, 2964–2976. [Google Scholar] [CrossRef]
- Pheysey, J.; De Cola, F.; Martinez-Hergueta, F. Short fibre/unidirectional hybrid thermoplastic composites: Experimental characterisation and digital analysis. Compos. Part A Appl. Sci. Manuf. 2024, 181, 108121. [Google Scholar] [CrossRef]
- Mohan, K.H.R.; Benal, M.G.M.; Pradeep, K.G.S.; Tambrallimath, V.; Geetha, H.R.; Khan, T.M.Y.; Rajhi, A.A.; Baig, M.A.A. Influence of Short Glass Fibre Reinforcement on Mechanical Properties of 3D Printed ABS-Based Polymer Composites. Polymers 2022, 14, 1182. [Google Scholar] [CrossRef] [PubMed]
- Adapa, S.K.; Jagadish. Design and fabrication of internal mixer and filament extruder for extraction of hybrid filament composite for FDM applications. Int. J. Interact. Des. Manuf. 2024, 18, 419–432. [Google Scholar] [CrossRef]
- Müller, D.; Bruchmüller, M.; Puch, F. Preparation of Polypropylene Composites with Pyrolyzed Carbon Fibers Using an Internal Mixer. Recycling 2024, 9, 115. [Google Scholar] [CrossRef]
- Valente, M.; Rossitti, I.; Sambucci, M. Different Production Processes for Thermoplastic Composite Materials: Sustainability versus Mechanical Properties and Processes Parameter. Polymers 2023, 15, 242. [Google Scholar] [CrossRef]
- Berzin, F.; David, C.; Vergnes, B. Use of Flow Modeling to Optimize the Twin-Screw Extrusion Process for the Preparation of Lignocellulosic Fiber-Based Composites. Front. Mater. 2020, 7, 218. [Google Scholar] [CrossRef]
- Rabbi, M.S.; Islam, T.; Islam, G.M.S. Injection-molded natural fiber-reinforced polymer composites–A review. Int. J. Mech. Mater. Eng. 2021, 16, 15. [Google Scholar] [CrossRef]
- Sriseubsai, W.; Praemettha, A. Hybrid Natural Fiber Composites of Polylactic Acid Reinforced with Sisal and Coir Fibers. Polymers 2025, 17, 64. [Google Scholar] [CrossRef]
- Castro, D.O.; Ruvolo-Filho, A.C.; Frollini, E. Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polym. Test. 2013, 31, 880–888. [Google Scholar] [CrossRef]
- ASTM D256-24; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics (Last updated: 1 January 2025). ASTM International: West Conshohocken, PA, USA, 2025. [CrossRef]
- ASTM D790-03; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (Last updated: 24 July 2017). ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Hoareau, W.; Trindade, W.G.; Siegmund, B.; Castellan, A.; Frollini, E. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: Characterization and stability. Polym. Degrad. Stab. 2004, 86, 567–576. [Google Scholar] [CrossRef]
- D’Almeida, A.L.F.S.; Barreto, D.W.; Calado, V.; D’Almeida, J.R.M. Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 2008, 91, 405–408. [Google Scholar] [CrossRef]
- Blázquez-Blázquez, E.; Barranco-García, R.; Díez-Rodríguez, T.M.; Cerrada, M.L.; Pérez, E. Role of the plasticizers on the crystallization of PLA and its composites with mesoporous MCM-41. J. Mater. Sci. 2024, 59, 6305–6321. [Google Scholar] [CrossRef]
- Salkind, M.J. The role of Interfaces in Fiber Composites, Chap 14. In Surfaces and Interfaces II; Burke, J.J., Reed, N.L., Weiss, V., Eds.; Syracuse University Press: Syracuse, NY, USA, 1968. [Google Scholar]
- Zhou, J.; Fan, M.; Chen, L. Interface and bonding mechanisms of plant fibre composites: An overview. Compos. B Eng. 2016, 101, 31–45. [Google Scholar] [CrossRef]
- Leite-Barbosa, O.; de Oliveira, M.F.L.; Braga, F.C.F.; Monteiro, S.N.; de Oliveira, M.G.; Veiga-Junior, V.F. Impact of Buriti Oil from Mauritia flexuosa Palm Tree on the Rheological, Thermal, and Mechanical Properties of Linear Low-Density Polyethylene for Improved Sustainability. Polymers 2024, 16, 3037. [Google Scholar] [CrossRef]
Material | Xc (%) |
---|---|
HDBPE | 67 |
HDBPE/5%CA/10%Fiber-extruder | 84 |
HDBPE/5%CA/10%Fiber-internal mixer | 82 |
HDBPE/5%CO/10%Fiber-extruder | 86 |
HDBPE/5%CO/10%Fiber-internal mixer | 85 |
HDBPE/5%OSE/10%Fiber-extruder | 85 |
HDBPE/5%OSE/10%Fiber-internal mixer | 84 |
Temperature (°C) | |||
---|---|---|---|
Peak 1 | Peak 2 | Peak 3 | |
HDBPE | −126 | −50 | 37 |
HDBPE/5% CA/10% fiber | −125 | −53 | 36 |
HDBPE/5% CO/10% fiber | −125 | −57 | 40 |
HDBPE/5% OSE/10% fiber | −129 | −51 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro, D.O.; Santos, R.P.O.; Ruvolo-Filho, A.C.; Frollini, E. Properties of Composites from Curauá Fibers and High-Density Bio-Based Polyethylene: The Influence of Processing Methods. Fibers 2025, 13, 45. https://doi.org/10.3390/fib13040045
de Castro DO, Santos RPO, Ruvolo-Filho AC, Frollini E. Properties of Composites from Curauá Fibers and High-Density Bio-Based Polyethylene: The Influence of Processing Methods. Fibers. 2025; 13(4):45. https://doi.org/10.3390/fib13040045
Chicago/Turabian Stylede Castro, Daniele O., Rachel P. O. Santos, Adhemar C. Ruvolo-Filho, and Elisabete Frollini. 2025. "Properties of Composites from Curauá Fibers and High-Density Bio-Based Polyethylene: The Influence of Processing Methods" Fibers 13, no. 4: 45. https://doi.org/10.3390/fib13040045
APA Stylede Castro, D. O., Santos, R. P. O., Ruvolo-Filho, A. C., & Frollini, E. (2025). Properties of Composites from Curauá Fibers and High-Density Bio-Based Polyethylene: The Influence of Processing Methods. Fibers, 13(4), 45. https://doi.org/10.3390/fib13040045