Sustainable and Naturally Derived Wet Spun Fibers: A Systematic Literature Review
Abstract
:1. Introduction and Global Scenario
2. Methods
2.1. Protocol
2.2. Eligibility Criteria
2.3. Research Strategy
2.4. Selection Process
2.5. Data Extraction and Analysis
3. Results of Data Collection
4. Results Discussion
4.1. Cellulose and Its Derivatives
4.1.1. Sources and Properties
4.1.2. Technologies for the Production of Cellulose-Based Fibers
Viscose and Cuprammonium Technologies
Lyocell Technology
Ioncell Technology
Dissolution Process with Alkali/Urea Systems
4.1.3. Strategies for the Production of Cellulose-Based Fibers with Tailored Mechanical Properties
4.1.4. Strategies for the Production of Cellulose-Precursor Fibers for Their Conversion into CFs
4.2. Silk
4.2.1. Sources, Properties, and Applications
4.2.2. Strategies for the Production of Silk-Based Fibers with Tailored Mechanical Properties
4.3. Alginate
4.3.1. Sources, Properties, and Applications
4.3.2. Production of Alginate-Based Fibers
4.3.3. Strategies for the Production of Alginate-Based Fibers with Tailored Mechanical Properties
4.4. Chitin and Chitosan
4.4.1. Sources, Properties, and Applications
4.4.2. Production of Chitin- and Chitosan-Based Fibers
4.4.3. Strategies for the Production of Chitin- and Chitosan-Based Fibers with Tailored Mechanical Properties
4.5. Other Natural Polymers
5. Brief Overview
6. Concluding Remarks
- The selection of the raw material, in which molecular weight is a crucial parameter;
- The conditions for dissolving the biopolymer (e.g., concentration and spinnability of the dope solution); specifically, the viscosity of the dope solution strongly affects the spinnability, and the mechanical performance of the resulting fibers;
- The spinning parameters (e.g., the extrusion speed, spinning temperature, air gap length);
- The composition and coagulation conditions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, H.; Sun, T.; Zhou, J. Recent Progress in Regenerated Cellulose Fibers by Wet Spinning. Macromol. Mater. Eng. 2023, 308, 2300089. [Google Scholar] [CrossRef]
- Nocca, G.; Arcovito, A.; Elkasabgy, N.A.; Basha, M.; Giacon, N.; Mazzinelli, E.; Abdel-Maksoud, M.S.; Kamel, R. Cellulosic Textiles-An Appealing Trend for Different Pharmaceutical Applications. Pharmaceutics 2023, 15, 2738. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research, Inc. Synthetic Fibers Market Size, Share & Trends Analysis Report by Type (Acrylics, Polyester, Nylon), by Application (Clothing, Home Furnishing, Filtration), by Region, and Segment Forecasts, 2023–2030; Grand View Research, Inc.: San Francisco, CA, USA, 2018; p. 145. [Google Scholar]
- Tian, W.; Huang, K.; Zhu, C.; Sun, Z.; Shao, L.; Hu, M.; Feng, X. Recent Progress in Biobased Synthetic Textile Fibers. Front. Mater. 2022, 9, 1098590. [Google Scholar] [CrossRef]
- Levison, P.R. Ion Exchange|Isolation of Biopolymers. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 481–484. [Google Scholar] [CrossRef]
- Deb, P.K.; Kokaz, S.F.; Abed, S.N.; Paradkar, A.; Tekade, R.K. Chapter 6—Pharmaceutical and Biomedical Applications of Polymers. In Basic Fundamentals of Drug Delivery: Advances in Pharmaceutical Product Development and Research; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 203–267. [Google Scholar] [CrossRef]
- Das, A.; Ringu, T.; Ghosh, S.; Pramanik, N. A Comprehensive Review on Recent Advances in Preparation, Physicochemical Characterization, and Bioengineering Applications of Biopolymers. Polym. Bull. 2023, 80, 7247–7312. [Google Scholar] [CrossRef] [PubMed]
- Rohani Shirvan, A.; Nouri, A.; Sutti, A. A Perspective on the Wet Spinning Process and its Advancements in Biomedical Sciences. Eur. Polym. J. 2022, 181, 111681. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Duan, C.; Hu, H.; Li, H.; Li, J.; Liu, Y.; Ma, X.; Stavik, J.; Ni, Y. Regenerated Cellulose by the Lyocell Process, a Brief Review of the Process and Properties. BioResources 2018, 13, 4577–4592. [Google Scholar] [CrossRef]
- Li, K.; Ni, X.; Wu, Q.; Yuan, C.; Li, C.; Li, D.; Chen, H.; Lv, Y.; Ju, A. Carbon-Based Fibers: Fabrication, Characterization and Application. Adv. Fiber Mater. 2022, 4, 631–682. [Google Scholar] [CrossRef]
- Zahra, H.; Sawada, D.; Guizani, C.; Ma, Y.; Kumagai, S.; Yoshioka, T.; Sixta, H.; Hummel, M. Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fibers. Biomacromolecules 2020, 21, 4326–4335. [Google Scholar] [CrossRef]
- Lengsfeld, H.; Mainka, H.; Altstädt, V. Carbon Fibers. In Carbon Fibers; Springer: Berlin/Heidelberg, Germany, 2020; pp. 17–73. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Zhang, J.; Yamagishi, N.; Tominaga, K.; Gotoh, Y. High-strength Regenerated Cellulose Fibers Spun from 1-butyl-3-methylimidazolium Chloride Solutions. J. Appl. Polym. Sci. 2017, 134, 45551. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, Z.; Nie, Y.; Li, L. Fabrication of Regenerated Cellulose Fibers with Good Strength and Biocompatibility from Green Spinning Process of Ionic Liquid. Macromol. Mater. Eng. 2021, 306, 2000741. [Google Scholar] [CrossRef]
- Elsayed, S.; Hummel, M.; Sawada, D.; Guizani, C.; Rissanen, M.; Sixta, H. Superbase-based Protic Ionic Liquids for Cellulose Filament Spinning. Cellulose 2021, 28, 533–547. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Q.; Yue, X.; Zuo, B.; Qin, M.; Li, F.; Kaplan, D.L.; Zhang, X. Regeneration of High-quality Silk Fibroin Fiber by Wet Spinning from CaCl2-formic Acid Solvent. Acta Biomater. 2015, 12, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Allardyce, B.J.; Rajkhowa, R.; Hegh, D.; Qin, S.; Usman, K.A.S.; Mota-Santiago, P.; Zhang, J.; Lynch, P.; Wang, X.; et al. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating. Macromol. Rapid Commun. 2022, 43, e2100891. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, X.; Yu, H.; Ma, C.; Yao, J. Biomimicking the Structure of Silk Fibers via Cellulose Nanocrystal as β-Sheet Crystallite. RSC Adv. 2014, 4, 14304–14313. [Google Scholar] [CrossRef]
- Yan, M.; Shi, J.; Liu, L.; Zhu, H.; Tang, S.; Zhou, G.; Zeng, J.; Zhang, H.; Yu, Y.; Guo, J. Preparation of High-strength and High-toughness Sodium Alginate Fibers Based on the Study of Multi-ion Diffusion Kinetics in a Low Temperature Dissolution System. New J. Chem. 2021, 45, 5981–5991. [Google Scholar] [CrossRef]
- Wang, Q.-Q.; Liu, Y.; Zhang, C.-J.; Zhang, C.; Zhu, P. Alginate/gelatin Blended Hydrogel Fibers Cross-linked by Ca2+ and Oxidized Starch: Preparation and Properties. Mater. Sci. Eng. C 2019, 99, 1469–1476. [Google Scholar] [CrossRef]
- Zhao, T.; Li, X.; Gong, Y.; Guo, Y.; Quan, F.; Shi, Q. Study on Polysaccharide Polyelectrolyte Complex and Fabrication of Alginate/chitosan Derivative Composite Fibers. Int. J. Biol. Macromol. 2021, 184, 181–187. [Google Scholar] [CrossRef]
- Nguyen, K.D. Temperature Effect of Water Coagulation Bath on Chitin Fiber Prepared through Wet-Spinning Process. Polymers 2021, 13, 1909. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Q.; Zao, Y.; Ma, J.; Wan, Z.; Li, S.; Li, D.; Jin, Y. Mechanically Strong All-chitin Filaments: Wet-spinning of β-chitin Nanofibers in Aqueous NaOH. Int. J. Biol. Macromol. 2022, 222, 3243–3249. [Google Scholar] [CrossRef]
- Wawro, D.; Steplewski, W.; Komisarczyk, A.; Krucinska, I. Formation and Properties of Highly Porous Dibutyrylchitin Fibres Containing Nanoparticles. Fibres Text. East. Eur. 2013, 21, 31–37. [Google Scholar]
- Perrin, N.; Mohammadkhani, G.; Homayouni Moghadam, F.; Delattre, C.; Zamani, A. Biocompatible Fibers from Fungal and Shrimp Chitosans for Suture Application. Curr. Res. Biotechnol. 2022, 4, 530–536. [Google Scholar] [CrossRef]
- Granero, A.J.; Razal, J.M.; Wallace, G.G.; in het Panhuis, M. Mechanical Reinforcement of Continuous Flow Spun Polyelectrolyte Complex Fibers. Macromol. Biosci. 2009, 9, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, L.; You, H.; Zhou, S.; Feng, Y.; You, R. Silk Nanofibrils/chitosan Composite Fibers with Enhanced Mechanical Properties. Polym. Eng. Sci. 2023, 63, 379–386. [Google Scholar] [CrossRef]
- Zhang, W.; Xue, Z.; Yan, M.; Liu, J.; Xia, Y. Effect of Epichlorohydrin on the Wet Spinning of Carrageenan Fibers under Optimal Parameter Conditions. Carbohydr. Polym. 2016, 150, 232–240. [Google Scholar] [CrossRef]
- Siriwardane, M.L.; DeRosa, K.; Collins, G.; Pfister, B.J. Controlled Formation of Cross-linked Collagen Fibers for Neural Tissue Engineering Applications. Biofabrication 2014, 6, 015012. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, N.; Li, S.; Zhang, L.; Tong, X.; Shao, Y.; Shen, C.; Wen, Y.; Jian, M.; Shao, Y.; et al. Reinforced Wool Keratin Fibers via Dithiol Chain Re-bonding. Adv. Funct. Mater. 2023, 33, 2213644. [Google Scholar] [CrossRef]
- Wang, H.; Gurau, G.; Rogers, R.D. Ionic Liquid Processing of Cellulose. Chem. Soc. Rev. 2012, 41, 1519–1537. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, R.; Zou, Y.; Mao, J.; Wang, L. Turning Industrial Waste-flax Noil into Regenerated Cellulose Fiber Electrodes for Eco-friendly Supercapacitors. Ind. Crops Prod. 2022, 176, 114377. [Google Scholar] [CrossRef]
- Jiang, Z.; Miao, J.; Yongqi, Y.; Zhang, L. Effective Preparation of Bamboo Cellulose Fibers in Quaternary Ammonium/DMSO Solvent. BioResources 2016, 11, 4536–4549. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Banitaba, S.N.; Khademolqorani, S.; Kamika, I.; Jadhav, V.V. Overlooked Promising Green Features of Electrospun Cellulose-Based Fibers in Lithium-Ion Batteries. ACS Omega 2023, 8, 43388–43407. [Google Scholar] [CrossRef] [PubMed]
- Mendes, I.S.F.; Prates, A.; Evtuguin, D.V. Production of Rayon Fibres from Cellulosic Pulps: State of the Art and Current Developments. Carbohydr. Polym. 2021, 273, 118466. [Google Scholar] [CrossRef] [PubMed]
- Ohwoavworhua, F.O.; Adelakun, T.A. Non-wood Fibre Production of Microcrystalline Cellulose from Sorghum caudatum: Characterisation and Tableting Properties. Indian J. Pharm. Sci. 2010, 72, 295–301. [Google Scholar] [CrossRef]
- Iwamoto, S.; Isogai, A.; Iwata, T. Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers. Biomacromolecules 2011, 12, 831–836. [Google Scholar] [CrossRef]
- Chen, J.; Guan, Y.; Wang, K.; Zhang, X.; Xu, F.; Sun, R. Combined Effects of Raw Materials and Solvent Systems on the Preparation and Properties of Regenerated Cellulose Fibers. Carbohydr. Polym. 2015, 128, 147–153. [Google Scholar] [CrossRef]
- Zhu, C.; Koutsomitopoulou, A.F.; Eichhorn, S.J.; van Duijneveldt, J.S.; Richardson, R.M.; Nigmatullin, R.; Potter, K.D. High Stiffness Cellulose Fibers from Low Molecular Weight Microcrystalline Cellulose Solutions Using DMSO as Co-Solvent with Ionic Liquid. Macromol. Mater. Eng. 2018, 303, 1800029. [Google Scholar] [CrossRef]
- Rana, S.; Pichandi, S.; Parveen, S.; Fangueiro, R. Regenerated Cellulosic Fibers and Their Implications on Sustainability. In Roadmap to Sustainable Textiles and Clothing: Eco-Friendly Raw Materials, Technologies, and Processing Methods; Muthu, S.S., Ed.; Springer: Singapore, 2014; pp. 239–276. [Google Scholar] [CrossRef]
- Khan, G.M.A.; Hasan, M.S.; Rahaman, M.H.; Aydid, A.; Rahman, M.M.; Hasanuzzaman, M.; Jahan, R.; Jannat-Al-Foisal, M. Cellulose and Its Composites in Textiles and Food Industry. In Regenerated Cellulose and Composites: Morphology-Property Relationship; Shabbir, M., Ed.; Springer: Singapore, 2023; pp. 223–264. [Google Scholar] [CrossRef]
- Sayyed, A.J.; Deshmukh, N.A.; Pinjari, D.V. A Critical Review of Manufacturing Processes Used in Regenerated Cellulosic Fibres: Viscose, Cellulose Acetate, Cuprammonium, LiCl/DMAc, Ionic Liquids, and NMMO Based Lyocell. Cellulose 2019, 26, 2913–2940. [Google Scholar] [CrossRef]
- Shaikh, T.; Chaudhari, S.; Varma, A. Viscose Rayon: A Legendary Development in the Manmade Textile. Int. J. Eng. Res. Appl. 2012, 2, 675–680. [Google Scholar]
- Tu, H.; Li, X.; Liu, Y.; Luo, L.; Duan, B.; Zhang, R. Recent Progress in Regenerated Cellulose-based Fibers from Alkali/urea System via Spinning Process. Carbohydr. Polym. 2022, 296, 119942. [Google Scholar] [CrossRef]
- Gross, A.S.; Bell, A.T.; Chu, J.W. Preferential interactions between lithium chloride and glucan chains in N,N-dimethylacetamide drive cellulose dissolution. J. Phys. Chem. B 2013, 117, 3280–3286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tominaga, K.; Yamagishi, N.; Gotoh, Y. Comparison of Regenerated Cellulose Fibers Spun from Ionic Liquid Solutions with Lyocell Fiber. J. Fiber Sci. Technol. 2020, 76, 257–266. [Google Scholar] [CrossRef]
- Asaadi, S.; Kakko, T.; King, A.W.T.; Kilpeläinen, I.; Hummel, M.; Sixta, H. High-Performance Acetylated Ioncell-F Fibers with Low Degree of Substitution. ACS Sustain. Chem. Eng. 2018, 6, 9418–9426. [Google Scholar] [CrossRef] [PubMed]
- Stepan, A.M.; Michud, A.; Helisten, S.; Hummel, M.; Sixta, H. IONCELL-P&F: Pulp Fractionation and Fiber Spinning with Ionic Liquids. Ind. Eng. Chem. Res. 2016, 55, 8225–8233. [Google Scholar] [CrossRef]
- Vocht, M.P.; Beyer, R.; Thomasic, P.; Müller, A.; Ota, A.; Hermanutz, F.; Buchmeiser, M.R. High-performance Cellulosic Filament Fibers Prepared via Dry-jet Wet Spinning from Ionic Liquids. Cellulose 2021, 28, 3055–3067. [Google Scholar] [CrossRef]
- Ma, Y.; You, X.; Nieminen, K.; Sawada, D.; Sixta, H. Influence of DP and MMD of the pulps used in the Ioncell® process on processability and fiber properties. RSC Sustain. 2023, 1, 1497–1510. [Google Scholar] [CrossRef]
- Rissanen, M.; Schlapp-Hackl, I.; Sawada, D.; Raiskio, S.; Ojha, K.; Smith, E.; Sixta, H. Chemical Recycling of Hemp Waste Textiles via the Ionic Liquid based Dry-jet-wet Spinning Technology. Text. Res. J. 2022, 93, 2545–2557. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef]
- Nypelö, T.; Asaadi, S.; Kneidinger, G.; Sixta, H.; Konnerth, J. Conversion of Wood-biopolymers into Macrofibers with Tunable Surface Energy via Dry-jet Wet-spinning. Cellulose 2018, 25, 5297–5307. [Google Scholar] [CrossRef]
- Xue, Y.; Li, W.; Yang, G.; Lin, Z.; Qi, L.; Zhu, P.; Yu, J.; Chen, J. Strength Enhancement of Regenerated Cellulose Fibers by Adjustment of Hydrogen Bond Distribution in Ionic Liquid. Polymers 2022, 14, 2030. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium Chloride Room Temperature Ionic Liquid: A New and Powerful Nonderivatizing Solvent for Cellulose. Macromolecules 2005, 38, 8272–8277. [Google Scholar] [CrossRef]
- Wang, B.; Nie, Y.; Kang, Z.; Liu, X. Effects of Coagulating Conditions on the Crystallinity, Orientation and Mechanical Properties of Regenerated Cellulose Fibers. Int. J. Biol. Macromol. 2023, 225, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Yuan, Y.; Wang, B.; Yin, X.; Mukuze, K.S.; Huang, W.; Zhang, Y.; Wang, H. Analysis of Regenerated Cellulose Fibers with Ionic Liquids as a Solvent as Spinning Speed is Increased. Cellulose 2012, 19, 1075–1083. [Google Scholar] [CrossRef]
- Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Cellulose Dissolution with Polar Ionic Liquids under Mild Conditions: Required Factors for Anions. Green Chem. 2008, 10, 44–46. [Google Scholar] [CrossRef]
- Li, R.; Chang, C.; Zhou, J.; Zhang, L.; Gu, W.; Li, C.; Liu, S.; Kuga, S. Primarily Industrialized Trial of Novel Fibers Spun from Cellulose Dope in NaOH/Urea Aqueous Solution. Ind. Eng. Chem. Res. 2010, 49, 11380–11384. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, L.; Cai, J.; Zhou, J.; Kondo, T. Effects of Coagulation Conditions on Properties of Multifilament Fibers Based on Dissolution of Cellulose in NaOH/Urea Aqueous Solution. Ind. Eng. Chem. Res. 2008, 47, 8676–8683. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Dawelbeit, A.; Deng, Y.; Lang, Y.; Yu, M. Structure and Properties of Regenerated Cellulose Fibers from Aqueous NaOH/thiourea/urea Solution. Cellulose 2017, 24, 4123–4137. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Lang, Y.; Yu, M. Structure Development in the Condensed State of Cellulose Fiber Regenerated from Alkali Complex Solution. Cellulose 2018, 25, 1555–1569. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Zhang, S.; Li, F.; Yu, J.; Lin, J. Structure and Properties of Novel Regenerated Cellulose Fibers Prepared in NaOH Complex Solution. Carbohydr. Polym. 2013, 98, 1031–1038. [Google Scholar] [CrossRef]
- Ruan, D.; Zhang, L.N.; Zhou, J.P.; Jin, H.M.; Chen, H. Structure and Properties of Novel Fibers Spun from Cellulose in NaOH/thiourea Aqueous Solution. Macromol. Biosci. 2004, 4, 1105–1112. [Google Scholar] [CrossRef]
- Tu, H.; Xie, K.; Ying, D.; Luo, L.; Liu, X.; Chen, F.; Duan, B.; Fu, Q.; Zhang, L. Green and Economical Strategy for Spinning Robust Cellulose Filaments. ACS Sustain. Chem. Eng. 2020, 8, 14927–14937. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Liu, T.; Liu, T.; Zhang, J.; Liu, H. Eco-friendly Post-consumer Cotton Waste Recycling for Regenerated Cellulose Fibers. Carbohydr. Polym. 2019, 206, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Kamida, K.; Okajima, K.; Matsui, T.; Kowsaka, K. Study on the Solubility of Cellulose in Aqueous Alkali Solution by Deuteration IR and 13C NMR. Polym. J. 1984, 16, 857–866. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, L. Solubility of Cellulose in NaOH/Urea Aqueous Solution. Polym. J. 2000, 32, 866–870. [Google Scholar] [CrossRef]
- Coscia, M.G.; Bhardwaj, J.; Singh, N.; Santonicola, M.G.; Richardson, R.; Thakur, V.K.; Rahatekar, S. Manufacturing & Characterization of Regenerated Cellulose/curcumin Based Sustainable Composites Fibers Spun from Environmentally Benign Solvents. Ind. Crops Prod. 2018, 111, 536–543. [Google Scholar] [CrossRef]
- Makarov, I.; Vinogradov, M.; Gromovykh, T.; Lutsenko, S.; Feldman, N.; Shambilova, G.; Sadykova, V. Antifungal composite fibers based on cellulose and betulin. Fibers 2018, 6, 23. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, J.; Zhao, M.; Gong, Y.; Qiao, B. Effect of Coagulation Bath Temperature on Mechanical, Morphological, and Thermal Properties of Cellulose/Antarctic Krill Protein Composite Fibers. Langmuir 2020, 36, 5647–5653. [Google Scholar] [CrossRef]
- Kim, H.C.; Panicker, P.S.; Kim, D.; Adil, S.; Kim, J. High-strength Cellulose Nanofiber/graphene Oxide Hybrid Filament Made by Continuous Processing and Its Humidity Monitoring. Sci. Rep. 2021, 11, 13611. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Yu, H.-Y.; Abdalkarim, S.Y.H.; Zhou, J.; Yao, J.; Zhang, L. Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Appl. Mater. Interfaces 2021, 13, 40953–40963. [Google Scholar] [CrossRef]
- Biswas, M.C.; Bush, B.; Ford, E. Glucaric Acid Additives for the Antiplasticization of Fibers Wet Spun from Cellulose Acetate/acetic acid/water. Carbohydr. Polym. 2020, 245, 116510. [Google Scholar] [CrossRef]
- Tian, M.; Qu, L.; Zhang, X.; Zhang, K.; Zhu, S.; Guo, X.; Han, G.; Tang, X.; Sun, Y. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr. Polym. 2014, 111, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Chen, D.; Yu, Y.; Miao, J.; Liu, Y.; Zhang, L. Composite Fibers Prepared from Multi-walled Carbon Nanotubes/cellulose Dispersed/dissolved in Ammonium/dimethyl Sulfoxide Mixed Solvent. RSC Adv. 2017, 7, 2186–2192. [Google Scholar] [CrossRef]
- Wan, Z.; Chen, C.; Meng, T.; Mojtaba, M.; Teng, Y.; Feng, Q.; Li, D. Multifunctional Wet-Spun Filaments through Robust Nanocellulose Networks Wrapping to Single-Walled Carbon Nanotubes. ACS Appl. Mater. Interfaces 2019, 11, 42808–42817. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Chen, B.; Peng, X.; Kuang, T. Strength and Modulus Improvement of Wet-spun Cellulose I Filaments by Sequential Physical and Chemical Cross-linking. Mater. Des. 2017, 136, 45–53. [Google Scholar] [CrossRef]
- Marsano, E.; Corsini, P.; Canetti, M.; Freddi, G. Regenerated Cellulose-silk Fibroin Blends Fibers. Int. J. Biol. Macromol. 2008, 43, 106–114. [Google Scholar] [CrossRef]
- Bengtsson, A.; Landmer, A.; Norberg, L.; Yu, S.; Ek, M.; Brannvall, E.; Sedin, M. Carbon Fibers from Wet-Spun Cellulose-Lignin Precursors Using the Cold Alkali Process. Fibers 2022, 10, 108. [Google Scholar] [CrossRef]
- Yazawa, K.; Malay, A.D.; Ifuku, N.; Ishii, T.; Masunaga, H.; Hikima, T.; Numata, K. Combination of Amorphous Silk Fiber Spinning and Postspinning Crystallization for Tough Regenerated Silk Fibers. Biomacromolecules 2018, 19, 2227–2237. [Google Scholar] [CrossRef]
- Huang, L.; Shi, J.; Zhou, W.; Zhang, Q. Advances in Preparation and Properties of Regenerated Silk Fibroin. Int. J. Mol. Sci. 2023, 24, 13153. [Google Scholar] [CrossRef]
- Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S. Silk Fibroin of Bombyx mori Is Secreted, Assembling a High Molecular Mass Elementary Unit Consisting of H-chain, L-chain, and P25, with a 6:6:1 Molar Ratio. J. Biol. Chem. 2000, 275, 40517–40528. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, G.; Knight, D.P.; Shao, Z.; Chen, X. Wet-Spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solution: Discussion of Spinning Parameters. Biomacromolecules 2010, 11, 1–5. [Google Scholar] [CrossRef]
- Ling, S.; Zhou, L.; Zhou, W.; Shao, Z.; Chen, X. Conformation Transition Kinetics and Spinnability of Regenerated Silk Fibroin with Glycol, Glycerol and Polyethylene Glycol. Mater. Lett. 2012, 81, 13–15. [Google Scholar] [CrossRef]
- Wang, H.; Dong, Q.; Yao, J.; Shao, Z.; Ma, J.; Chen, X. Colorless Silk/Copper Sulfide Hybrid Fiber and Fabric with Spontaneous Heating Property under Sunlight. Biomacromolecules 2020, 21, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Zheng, Z.; Yao, J.; Chen, M.; Tang, Y.; Zhong, J.; Qi, Z.; Li, Z.; Shao, Z.; Chen, X. Tough Protein-carbon Nanotube Hybrid Fibers Comparable to Natural Spider Silks. J. Mater. Chem. B 2015, 3, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Cai, J.; Wang, H.; Chen, S.; Liu, Y.; Yao, J.; Shao, Z.; Chen, X. Artificial Ligament Made from Silk Protein/Laponite Hybrid Fibers. Acta Biomater. 2020, 106, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, W.; Zou, H.; Ke, G.; Li, W.; Ouyang, C. Feasibility of Wet Spinning of Silk-Inspired Polyurethane Elastic Biofiber. Mater. Lett. 2008, 62, 1949–1952. [Google Scholar] [CrossRef]
- Li, X.; Ming, J.; Ning, X. Wet-spun Conductive Silk Fibroin-polyaniline Filaments Prepared from a Formic Acid-shell Solution. J. Appl. Polym. Sci. 2019, 136, 47127. [Google Scholar] [CrossRef]
- Gulrajanid, M.L.; Sethi, S.; Gupta, S. Some Studies in Degumming of Silk with Organic Acids. J. Soc. Dye. Colour. 1992, 108, 79–86. [Google Scholar] [CrossRef]
- Prathumpai, W.; Promboon, A.; Werapan, B.; Nutaratat, P.; Chim-Anek, P.; Ninpetch, U. Pilot-Scale Protease Production by Bacillus sp. C4 for Silk Degumming Processes. J. Nat. Fibers 2022, 19, 1055–1068. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Gong, K.; Zhou, Q.; Zhang, T.; Li, Q. A Comparative Study of Ultrasonic Degumming of Silk Sericin using Citric Acid, Sodium Carbonate and Papain. Color. Technol. 2019, 135, 195–201. [Google Scholar] [CrossRef]
- Marsano, E.; Corsini, P.; Arosio, C.; Boschi, A.; Mormino, M.; Freddi, G. Wet Spinning of Bombyx mori Silk Fibroin Dissolved in N-methyl Morpholine N-oxide and Properties of Regenerated Fibres. Int. J. Biol. Macromol. 2005, 37, 179–188. [Google Scholar] [CrossRef]
- Wöltje, M.; Isenberg, K.L.; Cherif, C.; Aibibu, D. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein. Int. J. Mol. Sci. 2023, 24, 13492. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Masuda, H.; Zhao, C.; Asakura, T. Artificial Spinning and Characterization of Silk Fiber from Bombyx mori Silk Fibroin in Hexafluoroacetone Hydrate. Macromolecules 2002, 35, 6–9. [Google Scholar] [CrossRef]
- Ha, S.-W.; Tonelli, A.E.; Hudson, S.M. Structural Studies of Bombyx mori Silk Fibroin during Regeneration from Solutions and Wet Fiber Spinning. Biomacromolecules 2005, 6, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, H.; Zhang, M.; Hou, Z.; Li, S.; Wang, H.; Wu, X.-E.; Zhang, Y. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. ACS Nano 2023, 17, 5905–5912. [Google Scholar] [CrossRef]
- Zhang, M.; Weng, Y.-J.; Zhang, Y.-Q. Accelerated Desalting and Purification of Silk Fibroin in a CaCl2-EtOH-H2O Ternary System by Excess Isopropanol Extraction. J. Chem. Technol. Biotechnol. 2021, 96, 1176–1186. [Google Scholar] [CrossRef]
- Yazawa, K.; Iwata, S.; Gotoh, Y. Wild Silkworm Cocoon Waste Conversion into Tough Regenerated Silk Fibers by Solution Spinning. Biomacromolecules 2023, 24, 1700–1708. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, M.; Meng, Q. Wet Spinning is Employed to Produce Spider Silk with High Elasticity. APL Mater. 2023, 11, 081110. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, C.-F.; Gan, C.-Y.; Xia, X.-X.; Qian, Z.-G. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation. ACS Biomater. Sci. Eng. 2022, 8, 3299–3309. [Google Scholar] [CrossRef]
- Weatherbee-Martin, N.; Xu, L.; Hupe, A.; Kreplak, L.; Fudge, D.S.; Liu, X.-Q.; Rainey, J.K. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk. Biomacromolecules 2016, 17, 2737–2746. [Google Scholar] [CrossRef]
- Ainul Hafiza, A.H.; Khairunnisa-Atiqah, M.K.; Mazlan, N.S.N.; Salleh, K.M.; Zakaria, S. Chapter 14—Biocompatible and Biodegradable Materials in Medical Applications. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, D., Altalhi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 331–358. [Google Scholar] [CrossRef]
- Xiang, Y.; Ye, Q.; Li, W.; Xu, W.; Yang, H. Preparation of Wet-spun Polysaccharide Fibers from Chinese Medicinal Bletilla striata. Mater. Lett. 2014, 117, 208–210. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Ni, B.-J. Chapter 3—Algae-based Alginate Biomaterial: Production and Applications. In Biomass, Biofuels, and Biochemicals; Ngo, H., Guo, W., Pandey, A., Chang, J.-S., Lee, D.-J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 37–66. [Google Scholar] [CrossRef]
- Skjåk-Bræk, G.; Draget, K.I. 10.10—Alginates: Properties and Applications. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 213–220. [Google Scholar] [CrossRef]
- Alistair, M.; Stephen, G.O.P. Food Polysaccharides and Their Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Schoukens, G. 5—Bioactive Dressings to Promote Wound Healing. In Advanced Textiles for Wound Care, 2nd ed.; Rajendran, S., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 135–167. [Google Scholar] [CrossRef]
- Aneem, T.H.; Wong, S.Y.; Afrin, H.; Nurunnabi, M.; Li, X.; Arafat, M.T. Investigation of Coagulation Process of Wet-spun Sodium Alginate Polymannuronate Fibers with Varied Functionality using Organic Coagulants and Cross-linkers. Mater. Today Chem. 2021, 22, 100580. [Google Scholar] [CrossRef]
- Dodero, A.; Alberti, S.; Gaggero, G.; Ferretti, M.; Botter, R.; Vicini, S.; Castellano, M. An Up-to-Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. Adv. Mater. Interfaces 2021, 8, 2100809. [Google Scholar] [CrossRef]
- Inoue, A. Chapter Sixteen—Characterization of PL-7 Family Alginate Lyases From Marine Organisms and Their Applications. In Methods in Enzymology; Moore, B.S., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 605, pp. 499–524. [Google Scholar]
- Zhang, X.; Wang, X.; Fan, W.; Liu, Y.; Wang, Q.; Weng, L. Fabrication, Property and Application of Calcium Alginate Fiber: A Review. Polymers 2022, 14, 3227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Geng, C.; Zhao, X.; Xue, Z.; Quan, F.; Xia, Y. Preparation of CdTe/Alginate Textile Fibres with Controllable Fluorescence Emission through a Wet-Spinning Process and Application in the Trace Detection of Hg2+ Ions. Nanomaterials 2019, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Khajavi, R.; Abbasipour, M.; Barzi, M.G.; Rashidi, A.; Rahimi, M.K.; Mirzababa, H.H. Eucalyptus Essential Oil-Doped Alginate Fibers as a Potent Antibacterial Wound Dressing. Adv. Polym. Technol. 2014, 33, 21408. [Google Scholar] [CrossRef]
- Zdiri, K.; Cayla, A.; Elamri, A.; Erard, A.; Salaun, F. Alginate-Based Bio-Composites and Their Potential Applications. J. Funct. Biomater. 2022, 13, 117. [Google Scholar] [CrossRef]
- Thomas, S.; Balakrishnan, P.; Sreekala, S.M. Fundamental Biomaterials. In Fundamental Biomaterials: Polymers; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Frent, O.D.; Vicas, L.G.; Duteanu, N.; Morgovan, C.M.; Jurca, T.; Pallag, A.; Muresan, M.E.; Filip, S.M.; Lucaciu, R.; Marian, E. Physico-Chemical Properties of Sodium Alginate. Available online: https://encyclopedia.pub/entry/29966 (accessed on 11 February 2024).
- Silva, M.P.; Badruddin, I.J.; Tonon, T.; Rahatekar, S.; Gomez, L.D. Environmentally Benign Alginate Extraction and Fibres Spinning from Different European Brown Algae Species. Int. J. Biol. Macromol. 2023, 226, 434–442. [Google Scholar] [CrossRef]
- Li, S.; Chandra Biswas, M.; Ford, E. Dual Roles of Sodium Polyacrylate in Alginate Fiber Wet-spinning: Modify the Solution Rheology and Strengthen the Fiber. Carbohydr. Polym. 2022, 297, 120001. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Liu, Y.; Zhang, G.; Zhu, P. Characterization and Functional Assessment of Alginate Fibers Prepared by Metal-calcium Ion Complex Coagulation Bath. Carbohydr. Polym. 2020, 232, 115693. [Google Scholar] [CrossRef]
- Inamuddin; Ahamed, M.I.; Boddula, R.; Altalhi, T. Polysaccharides—Properties and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Kuddus, M.; Aguilar, C.N. Value-Addition in Food Products and Processing through Enzyme Technology; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Van Den Broek, L.A.M.; Boeriu, C.G. Chitin and Chitosan—Properties and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Mather, R.R.; Wardman, R.H. Chapter 2—Cellulosic Fibres. In Chemistry of Textile Fibres, 2nd ed.; Royal Society of Chemistry: London, UK, 2015; pp. 25–66. [Google Scholar]
- Huang, J.; Zhong, Y.; Zhang, X.; Xu, H.; Zhu, C.; Cai, J. Continuous Pilot-Scale Wet-Spinning of Biocompatible Chitin/Chitosan Multifilaments from an Aqueous KOH/Urea Solution. Macromol. Rapid Commun. 2021, 42, 2100252. [Google Scholar] [CrossRef]
- Kuznik, I.; Kruppke, I.; Cherif, C. Pure Chitosan-Based Fibers Manufactured by a Wet Spinning Lab-Scale Process Using Ionic Liquids. Polymers 2022, 14, 477. [Google Scholar] [CrossRef] [PubMed]
- Jafri, N.F.; Mohd Salleh, K.; Ahmad Ghazali, N.; Nyak Mazlan, N.S.; Ab Halim, N.H.; Zakaria, S. Effects of Carboxymethyl Cellulose Fiber Formations with Chitosan Incorporation via Coating and Mixing Processes. Int. J. Biol. Macromol. 2023, 253, 126971. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, D.; Hu, C.; Sun, F.; Gustave, W.; Tian, H.; Yang, S. Flexible Fibers Wet-spun from Formic Acid Modified Chitosan. Carbohydr. Polym. 2016, 136, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, J.; Fang, Q.; Xiao, B.; Wan, Y. Establishment of Nerve Growth Factor Gradients on Aligned Chitosan-polylactide/alginate Fibers for Neural Tissue Engineering Applications. Colloids Surf. B 2017, 160, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Funakoshi, T.; Majima, T.; Iwasaki, N.; Yamane, S.; Masuko, T.; Minami, A.; Harada, K.; Tamura, H.; Tokura, S.; Nishimura, S.-I. Novel Chitosan-based Hyaluronan Hybrid Polymer Fibers as a Scaffold in Ligament Tissue Engineering. J. Biomed. Mater. Res. A 2005, 74, 338–346. [Google Scholar] [CrossRef]
- Ma, B.; Qin, A.; Li, X.; He, C. High Tenacity Regenerated Chitosan Fibers Prepared by Using the Binary Ionic Liquid Solvent (Gly•HCl)-[Bmim]Cl. Carbohydr. Polym. 2013, 97, 300–305. [Google Scholar] [CrossRef]
- Bentley, F.E.; Passieux, R.; David, L.; Osorio-Madrazo, A. Pure Chitosan Biomedical Textile Fibers from Mixtures of Low- and High-Molecular Weight Bidisperse Polymer Solutions: Processing and Understanding of Microstructure-Mechanical Properties’ Relationship. Int. J. Mol. Sci. 2022, 23, 4767. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Zavgorodnya, O.; Berton, P.; Chhotaray, P.K.; Choudhary, H.; Rogers, R.D. Ionic Liquid Platform for Spinning Composite Chitin-Poly(lactic acid) Fibers. ACS Sustain. Chem. Eng. 2018, 6, 10241–10251. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Z.; Zhang, W.; Yan, M.; Xia, Y. Preparation and Properties of Wet-spun Agar Fibers. Carbohydr. Polym. 2018, 181, 760–767. [Google Scholar] [CrossRef]
- Bao, X.; Hayashi, K.; Li, Y.; Teramoto, A.; Abe, K. Novel Agarose and Agar Fibers: Fabrication and Characterization. Mater. Lett. 2010, 64, 2435–2437. [Google Scholar] [CrossRef]
- Dong, M.; Xue, Z.; Liu, J.; Yan, M.; Xia, Y.; Wang, B. Preparation of Carrageenan Fibers with Extraction of Chondrus via Wet Spinning Process. Carbohydr. Polym. 2018, 194, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Wu, Y.; Zhang, Q.; Xue, Z.; Geng, C.; Xia, Y. Study on the Mechanical and Flame Retardant Properties of a Novel Carrageenan Fiber-CAF-K,Al. Eur. Polym. J. 2021, 150, 110408. [Google Scholar] [CrossRef]
- Arafat, M.T.; Tronci, G.; Yin, J.; Wood, D.J.; Russell, S.J. Biomimetic Wet-stable Fibres via Wet Spinning and Diacid-based Crosslinking of Collagen Triple Helices. Polymer 2015, 77, 102–112. [Google Scholar] [CrossRef]
- Deng, F.; Dang, Y.; Tang, L.; Hu, T.; Ding, C.; Hu, X.; Wu, H.; Chen, L.; Huang, L.; Ni, Y.; et al. Tendon-inspired Fibers from Liquid Crystalline Collagen as The Pre-oriented Bioink. Int. J. Biol. Macromol. 2021, 185, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, S.; Qiao, D.; Wang, J.; Zhou, Q.; Wu, C.; Li, X.; Neisiany, R.E.; Sun, L.; Liu, Y.; et al. Chinese Tofu-Inspired Biomimetic Conductive and Transparent Fibers for Biomedical Applications. Small Methods 2023, 7, 2201604. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Qiao, X.; Hou, X.; Yang, Y. Pure Keratin Membrane and Fibers from Chicken Feather. Int. J. Biol. Macromol. 2016, 89, 614–621. [Google Scholar] [CrossRef]
- Yang, S.M.; Shaffer, M.S.P.; Brandt-Talbot, A. High Lignin Content Carbon Fiber Precursors Wet-Spun from Low-Cost Ionic Liquid Water Mixtures. ACS Sustain. Chem. Eng. 2023, 11, 8800–8811. [Google Scholar] [CrossRef]
- Wang, L.; Ago, M.; Borghei, M.; Ishaq, A.; Papageorgiou, A.C.; Lundahl, M.; Rojas, O.J. Conductive Carbon Microfibers Derived from Wet-Spun Lignin/Nanocellulose Hydrogels. ACS Sustain. Chem. Eng. 2019, 7, 6013–6022. [Google Scholar] [CrossRef]
- Foroughi, J.; Ruhparwar, A.; Aloko, S.; Wang, C.H. Manufacturing Ulvan Biopolymer for Wound Dressings. Macromol. Mater. Eng. 2024, 309, 2300268. [Google Scholar] [CrossRef]
- Togo, A.; Suzuki, S.; Kimura, S.; Iwata, T. High Tensile Strength Regenerated α-1,3-Glucan Fiber and Crystal Transition. ACS Omega 2021, 6, 20361–20368. [Google Scholar] [CrossRef]
- Togo, A.; Suzuki, S.; Kimura, S.; Iwata, T. Wet Spinning and Structure Analysis of α-1,3-Glucan Regenerated Fibers. ACS Appl. Polym. Mater. 2021, 3, 2063–2069. [Google Scholar] [CrossRef]
- Qiu, C.; Zhu, K.; Zhou, X.; Luo, L.; Zeng, J.; Huang, R.; Lu, A.; Liu, X.; Chen, F.; Zhang, L.; et al. Influences of Coagulation Conditions on the Structure and Properties of Regenerated Cellulose Filaments via Wet-Spinning in LiOH/Urea Solvent. ACS Sustain. Chem. Eng. 2018, 6, 4056–4067. [Google Scholar] [CrossRef]
- Kammiovirta, K.; Jääskeläinen, A.-S.; Kuutti, L.; Holopainen-Mantila, U.; Paananen, A.; Suurnäkki, A.; Orelma, H. Keratin-reinforced Cellulose Filaments from Ionic Liquid Solutions. RSC Adv. 2016, 6, 88797–88806. [Google Scholar] [CrossRef]
- Jiang, Z.; Tang, L.; Gao, X.; Zhang, W.; Ma, J.; Zhang, L. Solvent Regulation Approach for Preparing Cellulose-Nanocrystal-Reinforced Regenerated Cellulose Fibers and Their Properties. ACS Omega 2019, 4, 2001–2008. [Google Scholar] [CrossRef]
Database | Search Strategy | Nº of Records |
---|---|---|
Web of Science | fiber OR filament (Topic) and wet spinning OR wet spun (Topic) and mechanical OR tensile OR strength OR Young’s modulus OR strain OR elongation (Topic) and natural OR biomaterial OR biopolymer OR biomass OR bio-based OR renewable OR eco-friendly (All Fields) and coagulation OR precipitation OR regeneration OR gelation (All Fields) | 192 |
Scopus | (TITLE-ABS-KEY (fiber OR filament) AND TITLE-ABS-KEY (wet AND spinning OR wet AND spun) AND TITLE-ABS-KEY (mechanical OR tensile OR strength OR Young’s AND modulus OR strain OR elongation) AND ALL (natural OR biomaterial OR biopolymer OR biomass OR bio-based OR renewable OR eco-friendly) AND ALL (coagulation OR precipitation OR regeneration OR gelation)) | 92 |
PubMed | ((((fiber [Title/Abstract] OR filament [Title/Abstract]) AND (wet spinning [Title/Abstract] OR wet spun [Title/Abstract])) AND (mechanical [Title/Abstract] OR tensile [Title/Abstract] OR strength [Title/Abstract] OR Young’s modulus [Title/Abstract] OR strain [Title/Abstract] OR elongation [Title/Abstract])) AND (natural OR biomaterial OR biopolymer OR biomass OR bio-based OR renewable OR eco-friendly)) AND (coagulation OR precipitation OR regeneration OR gelation) | 86 |
Raw Material | Dope Solution | Parameters | Mechanical Properties | Other Properties | Ref |
---|---|---|---|---|---|
Cellulose (CE) from pulps with low and high DP. CE_L, DP of 714; CE_H, DP of 968. | 10.0–12.0 wt% CE [BMIM]Cl | Tspin (100–110 °C); Nozzle (Dhole of 270 µm and Lhole of 12 mm); Air gap (15 cm); Coag bath (water, 15 °C); Washing (water, overnight); Drying (RT). DR (@ coag bath, 16–78). Samples coded as CE_X DR Z, where X corresponds to the DP of CE (“L” for low DP and “H” for high PD) and Z to the DR (16, 39, and 78). | σ: 886 MPa (CE_L DR 78)–1000 MPa (CE_H DR 78) E: ~30 (CE_L DR 78)–36 GPa (CE_H DR 78) εb: 5.1% (CE_L DR 78)–6.7% (CE_H DR 78) | CE fibers presented a smooth surface and a circular cross section (D-J WS). | [14] |
CE from wood pulp and PD of 900. | 8.0 wt% CE EMIMDEP | Tspin (90 °C); Spinneret (21 holes, Dhole of 0.15 mm, L/D of 0.25); ve (4 m/min); Air gap (3 cm); Coag bath (water, RT, length of 2 m); Stretching bath (water, RT, length of 2 m); Washing (water, RT, length of 2 m); Drying (rollers). DR (DR1 @ coag bath, 1.0–1.8; DR2 @ stretching bath, 1.0–1.8; DR3 @ wash bath, 1.0–1.8). Samples coded as CE DR X_Y_Z where X, Y, and Z correspond to DR1 (1.0, 1.2, 1.4, 1.6, and 1.8), DR2 (1.0, 1.2, 1.4, 1.6, and 1.8), and DR3 (1.0, 1.2, 1.4, 1.6, and 1.8), respectively. | σ: 217.0 (CE DR 1_1.2_1)–1053.6 MPa (CE DR 1_1.8_1.8) εb: 5.2 (CE DR 1_1.8_1.8)–50.2% (CE DR 1_1_1.6) | Outer surface is almost smooth, although there were some serrations with the draw ratios increasing (D-J WS). | [15] |
CE from birch prehydrolysis kraft pulp, intrinsic viscosity of 494 mL/g, Mw of ~160.5 × 103 g/mol, and PDI of 3.6. | 13.0 wt% CE [DBNH]OAc, [mTBDH]OAc, [DBUH]OAc or NMMO (≥98 wt% in water, containing 0.3 wt% of isopropyl gallate and 0.13 wt% NaOH) | Tspin ([DBNH]OAc: 80 °C; [mTBDH]OAc: 85 °C; [DBUH]OAc and NMMO): 95 °C); Spinneret (200 holes, Dhole of 100 µm, L/D of 0.2); ve (3.5 m/min); Air gap (1 cm); Coag bath (water, 12 °C); Post-treatment (cut fibers, 10 cm); Washing (80 °C, 2 h); DR (DR, 3–12). Samples coded as CE_X DR Y, where X corresponds to the dope solvent ([DBNH]OAc, [mTBDH]OAc, [DBUH]OAc), and NMMO) and Y to the DR (3, 6, 9, and 12). | σ: ~3.3 (CE_[mTBDH]OAc DR 3)–5.6 cN/dtex (CE_[DBUH]OAc DR 12) E: 13.9 (CE_[DBNH]OAc DR 12)–17.4 GPa (CE_[mTBDH]OAc DR 12) εb: 8.0 (CE_[DBUH]OAc or [mTBDH]OAc DR 12)–~15.0% (CE_NMMO DR 3) | At a lower DR, the cross-sectional images revealed more irregularities and non-homogeneities present in all the fibers (D-J WS). | [16] |
Silk Fibroin (SF) from Bombyx mori silkworm cocoons (degummed). | 15.0 wt% SF 4.0 wt% CaCl2 in FA | Syringe (needle, Dneedle of 0.6 mm); Q (10 mL/h); Coag bath (water, RT); Post-treatment (water, overnight). Drawing (DR @ water, 30 min, 2–4). Samples coded as SF (without drawing) and SF DR X, where X corresponds to the DR (2, 3, and 4). | σ: 95.1 (SF)–470 MPa (SF DR 4) E: 3.9 (SF)–6.9 GPa (SF DR 4) εb: 15.3 (SF)–45.6% (SF DR 3) Breaking energy: 15 (SF)–78 kJ/k (SF DR 4) | The surface and cross-section of the RSF fibers displayed internal and external nanofibrous structures similar to the morphology of native silk fibers (WS). Dfiber: 12.8 (SF DR 4)–48.5 μm (SF). | [17] |
SF from Bombyx mori silkworm cocoons, (degummed). SF_H with high molecular weight, ~1.8 × 105 g/mol; SF_L with low molecular weight, ~3.3 × 104 g/mol. | 43.0 wt% SF_L 23.0 wt% SF_H 9.3 M LiBr SF_L/SF_H ratio of 90:10. | Syringe (needle, Dneedle of 0.16 mm); Q (2.5 mL/h); Coag bath (30 wt% (NH4)2SO4, RT); Drawing (DR @ coag bath, 1–5); Post-treatment (30 wt% (NH4)2SO4, RT, 2 h); Washing (water); Drying (fume hood, overnight). Sample coded as SF DR X, where X corresponds to the DR (1, 3, and 5). | σ: 198.2 (SF DR 1)–615.1 MPa (SF DR 5) E: 6.7 (SF DR 1)–11.7 GPa (SF DR 5) εb: 4.9 (SF DR 1)–100.3% (SF DR 3) Toughness: 16.2 (SF DR 1)–299.4 kJ/kg (SF DR 3) | The fiber surface presented striation along the fiber axis, indicating aligned topography (WS). Dfiber: 14.2 (SF DR 5)–50.3 µm (SF DR 1). | [18] |
SF from Bombyx mori silkworm cocoons (degummed). CNCs from mulberry branch barks. | 27.0 wt% SF 9.0 M LiBr Addition of CNC (SF/CNC ratios of 99:1, 97:3, 95:5 and 93:7). | Spinneret (1 hole, Dhole of 0.3 mm); Q (1.0 mL/min); Coag bath (methanol, RT); Drawing (DR @ post-treatment, 60 °C, 1–3); Washing (water); Drying (40 °C). | Optimum conditions: CNC/SF fibers with 5 wt% CNC and DR of 3: σ: 728.5 MPa E: 28.8 GPa εb: 23.1% | Dfiber: ~53 μm (at DR of 3) (WS). | [19] |
Sodium Alginate (SA), Mw of 5.0 × 106 g/mol. | 5.5% SA LiOH (5.2 wt%)/urea (20.0%) aqueous solution. | Spinneret (Dhole of 0.7 mm, Lnozzle of 31.75 mm); ve(9.0 mm/min); Coag bath (1.0–5.0% CaCl2, 30–50 °C, 5–25 min); Post-treatment (Washing, drafting, and drying). Samples coded as ALG_X_Y_Z, where X corresponds to the concentration of CaCl2 (1.0, 2.0, 3.0, 4.0, and 5.0%), Y to the coagulation bath temperature (30, 35, 40, 45, and 50 °C), and Z to the coagulation time (5, 10, 15, 20, and 25 min). | Optimal sample: ALG_2.0_35_15 σ: 4.0 cN/dtex εb: 11.4% | SA fibers showed uneven cross-section. | [20] |
SA, Mn of ~3.6 × 105, Mn/Mw of ~1.4 and M/G of ~0.3. Gelatin (GEL), type B. | 4.0 wt% SA Water Addition of GEL (SA/GEL: 10:5, 10:4, 10:3, 10:2 and 10:1) and oxidized starch (corresponding to 5.0 wt% of gelatin content). | Spinneret (900 holes, Dhole of 70 μm); ve (18 m/min); Coag bath (5.0 wt% Calcium chloride); Washing/stretching (ethanol, stretching ratio of 150%); Drying (air). Samples coded as ALG/XGEL, where X corresponds to the gelatin in ALG/GEL mass ration (0, 1, 2, 3, 4, or 5). | σ: 0.8 (ALG/5GEL)–1.3 cN/dtex (ALG/2GEL) εb: 2.3 (ALG/5GEL)–4.4% (ALG/2GEL) | (WS) | [21] |
SA, Mw of ~6.0 × 105 and M/G of ~1.0. Hydroxypropyl trimethyl ammonium chloride chitosan (HACC, Mw of ~7.6 × 105). | 5.5 wt% SA Water Addition of HACC (SA/HACC: 10:1 wt/wt). | Syringe; ve (1.9 m/min); Coag bath (3.0 wt% CaCl2, 30 °C); Washing (water, 50 °C); DR (DR1 @ coag bath; DR2 @ wash bath); Cross-linking bath (1.0 wt% glutaraldehyde, 1.0 m/min); Drying (85 °C, 20 min). | σ: 2.4 cN/dex εb: 14.1% | The SA/HACC fiber showed a smooth surface (WS). Dfiber: 109 μm. | [22] |
Chitin from crab shells, DA of 74.6% and MWD of 5.4 × 105 g/mol. | 1.0–2.0 wt% chitin DMAc with 5.0 wt% LiCl. | Spinneret (needle, Dneedle of 0.6 mm); Coag bath (water, 5, 20, and 60 °C, length of 250 mm); Post-treatment (water, 24 h); Washing (water). Samples coded as XChi_Z, where X corresponds to the concentration of chitin (1.0 and 2.0 wt%) temperature of the coagulation bath (5, 20 and 60 °C). | σ: 58 (1.0Chi_5)–182 MPa (2.0Chi_60) εb: 8 (1.0Chi_5)–33% (2.0Chi_60) | Lower coagulation temperatures (5 °C) result in fibers with voids, while higher temperatures (60 °C) produce denser structures with reduced micropores (WS). Dfiber: 69 (1.0Chi_20)–127 µm (2.0Chi_20). | [23] |
β-chitin nanofibers (β-ChNF, from squid pens). | 1.0 wt% β-ChNF 2.0 wt% AA | Syringe (needle, Dneedle of 180 μm); Q (3.5 mL/min); Coag bath (10.0 wt% NaOH, 1 min); Washing (2.0 wt% AA and water until neutral pH); Drying (air). | σ: 251.3 MPa E: 12.1 GPa εb: ~8.0% | Cross-section of fibers was almost cylindrical with compact layered structures (WS). Dfiber: 41 µm. | [24] |
Dibutyrylchitin (DBC, from krill chitin). Nano HAp (<200 nm, 97%). β-TCP. | 16.0 wt% DBC β-TCP(6% on DBC) or nano HAp (11.7% on DBC); Ethanol (67–78%) | Spinneret (150 holes, Dhole of 80 µm); ve (9.0–23.4 m/min); Coag bath (water or 5 wt% ethanol, 22 °C); Washing (water, 40 °C); Drawing (DR1 @ coag bath, 0.2–1.7; DR2 @ post-treatment, 90 °C, 1.4–2.7); Drying (30 °C). | σ *: 0.4–1.0 cN/dtex εb *: ~7–15% * The mechanical properties depended upon the concentration of ethanol in the solution as well as on the content of β-TCP or nano HAp, and spinning conditions. | The dibutyrylchitin fibres showed a smooth, even outer sheath, and inner porous macro-, micro-, and nano-structure. | [25] |
Chitosan (CS) from fungi with low (CSf_L, Mw of 32 × 103 g/mol and DA of 9.6%) and high molecular weight (CSf_H, Mw of 400 × 103 g/mol and DA of 15.8%). CS from shrimp with low (CSs_L, Mw of 50–190 × 103 g/mol and DA of 15%) and high molecular weight (CSs_H; 407 × 103 g/mol and DA of 23.7%). | 3.0–8.0 wt% CS Adipic acid or lactic acid (90%). | Syringe (Dneedle of 0.8 mm and Lneedle of 40 mm); Q (1 mL/min); Coag bath (NaOH in 10 wt% ethanol (1:1), RT, 3 min); Washing (water, RT, 3 min); Stretching (vertically on a board); Drying (overnight). Samples coded as YCSw_X_Z, where Y stands for CS dope concentration (3.0, 4.0, 6.0, and 8.0 wt%), w for CS source (“f” for fungi and “s” for shrimp), X for CS molecular weight (“L” for low and “H” for high), and Z for the acid used as dope solvent (“AD” for adipic acid and “LA” for lactic acid). | σ: 121.5 (4.0%CSs_H_LA)–308.0 MPa (3.0%CSs_H_AD) E: 7.9 (4.0%CSs_H_LA)–22.7 GPa (3.0%CSs_H_AD) | More irregularities were visible on the surface of fibers prepared by shrimp chitosan with a concentration of 4% (WS). Dfiber: 69 (3.0%CSs_H_AD)–138 mm (4.0%CSs_H_LA). | [26] |
CS, Mw of ~1.9 –3.1 × 105 and DD of 75 –85%. Gellan gum (GG, Mw of ~2–3 × 105 g/mol). | 0.6 wt% CS 1.0 vol% AA (pH ~1) 0.6 wt% gelllan gum Water (pH ~12) Note: The CS and GG solutions were used as dope and coagulant solutions. | Syringe (Dneedle of 0.60 mm); Q (45 mL/h); Coag bath (0.6 wt% GG aqueous solution (pH ~12) or 0.6 wt% CS in 1.0 vol% AA (pH ~1)); Drying (air, under tension); post-processing treatment (rigid frame, wetted, dry in air). Samples were coded as X/Y_Z, where the X corresponds to the dope solution, Y to the coagulant solution, and Z to the post-processing treatment (“Y” for yes and “N” for no). | σ: 169 (CS/GG_N)–300 MPa (GG/CS_Y) E: 4.3 (CS_GG_N)–11.3 GPa (GG/CS_ Y) εb: 5.6 (GG/CS_N)–6.6% (GG/CS_Y) Toughness: 2.8 (CS/GG_N)–11.6 J/g (GG/CS_Y) | Dfiber: 31 (GG/CS_Y)–64 μm (CS/GG_Y) (WS). | [27] |
CS, viscosity of 200–600 MPa·s and DD of 80%. SNF from Bombyx mori silkworm fibers | 0 wt% CS 1.0 wt% AA Addition of 0.2 wt% SNF suspension (SNF/CS ratios of 0/100, 10/100, 25/100, 50/100, 75/100, and 100/100). | Spinneret (not reported); Q (10 mL/h); Coag bath (ethanol/0.1 M NaOH, 3:2); Drawing (DR, 1.2); Washing (water); Drying. Samples coded as CS/XSNF, where X corresponds to the SNF ratio (0, 10, 25, 50, 75, and 100). | σ: 0.6 (CS/0SNF)–~2.6 cN/dtex (CS/100SNF) E: 0.2 (CS/0SNF)–1 cN/dtex (CS/100SNF) εb: ~5.1 (CS/100SNF)–~15% (CS/0SNF) | The external surface of pure CS fibers appeared flat and smooth (WS). Dfiber: 67–124 µm. | [28] |
Carrageenan (CAR) (κ-carrageenan). | 7.0–9.0 wt% of CAR 2.0 mol/L NaOH aqueous solution. | Spinneret (30 holes, Dhole of 0.08 mm); Coag bath (5.0, 7.0 or 9.0 wt% of BaCl2, 15–35 °C, length of 100 cm); Stretching (DR @ epichlorohydrin/ethanol (1:20, v/v), ethanol (95%, v/v) and BaCl2 (3.5 wt%), RT, length of 100 cm, 1.0–1.4); Washing (ethanol 50 and 95%, v/v) Drying (air, RT). Samples coded as XCAR_YBaCl2_W DR Z, where X corresponds to the CAR concentration (7.0, 8.0, and 9.0 wt%), Y to the concentration of BaCl2 (5.0, 7.0, and 9.0 wt%), W to the temperature of the coagulation bath (15, 25, and 35 °C) and Z to the DR (1.0, 1.2, and 1.4). | σ: 0.9 (8.0CAR_7.0BaCl2_35 DR 1.0)–1.6 cN/dtex (9.0CAR_5.0BaCl2_35 DR 1.2) Work of fracture: 0.3 (7.0CAR_9.0BaCl2_35 DR 1.4)–0.7 cN·cm (9.0CAR_9.0BaCl2_25 DR 1.0) Breakdown time: 6.2 (8.0CAR_5.0BaCl2_55 DR 1.4)–12.5 s (8.0CAR_7.0BaCl2_35 DR 1.0) After cross-linking reaction on the stretching bath with epichlorohydrin and ethanol: σ of 68.0 cN; εb of 21.8%; Work of fracture of 9.5 cN·cm; Breakdown time of 13.1 s | 9.0CAR_9.0BaCl2 showed the smoothest and most regular fibers (WS). | [29] |
Col, type I, extracted from tendons dissected of Sprague–Dawley rat tails. | 0.75–3.4 wt% Col 0.2% glacial AA. | Syringe (21 or 22G needle; Dneedle of 406 mm); Q (12.4 mL/h); Coag bath (NH₄OH/acetone (1:50 vol ratio), 25 °C, pH 9); Post-treatment/Cross-linking bath (1.0 wt% genipin or 1.0 wt% glutaraldehyde); Drying (24 h). Samples coded as XCol_Z, where X corresponds to the collagen concentration (0.75, 1.00, 2.00, and 3.40 wt%) and Z to the post cross-linking treatment with genipin (Gen) or glutaraldehyde (GA). | σ: 25 (3.40Col)–262 MPa (0.75Col) E: 0.2 (3.40Col)–2.8 GPa (0.75Col_GA) εb: 10.8 (0.75Col_GA)–43.6% (2.00Col) | Fibers produced from 0.75 wt% collagen dispersions formed the best fibers in terms of tensile behavior and fiber uniformity (WS). | [30] |
Keratin extracted from coarse wool waste. | 25.0 wt% keratin 0.3 M Na2CO3/NaHCO3 buffer (pH = 9.5) Addition of 13.0 wt% DTT and 10 wt% SDS (both based on keratin mass). | Syringe (needle, Dneedle of 310 µm); Q (0.2 mL/min); Coag bath (10% AA and 10% ethanol); Oxidation bath (1% v/v hydrogen peroxide solution); Post-treatment (1.0 wt% glycerol); Drying (oven). Drawing (DR @ oxidation bath, 4.8). Samples coded as Ker_gly and Ker for samples obtained with or without post-treatment, respectively. | σ: 140.8 (Ker_gly)–186.1 MPa (Ker) E: 7.4 GPa (Ker) εb: 8.0 (Ker)–20.6% (Ker_gly) | The regenerated wool keratin fiber exhibited a smooth surface morphology and a dense-packing cross-section without prominent voids (WS). Dfiber: 29.2 µm. | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, C.; Pinto, T.V.; Santos, R.M.; Correia, N. Sustainable and Naturally Derived Wet Spun Fibers: A Systematic Literature Review. Fibers 2024, 12, 75. https://doi.org/10.3390/fib12090075
Pereira C, Pinto TV, Santos RM, Correia N. Sustainable and Naturally Derived Wet Spun Fibers: A Systematic Literature Review. Fibers. 2024; 12(9):75. https://doi.org/10.3390/fib12090075
Chicago/Turabian StylePereira, Cristiana, Tânia V. Pinto, Raquel M. Santos, and Nuno Correia. 2024. "Sustainable and Naturally Derived Wet Spun Fibers: A Systematic Literature Review" Fibers 12, no. 9: 75. https://doi.org/10.3390/fib12090075
APA StylePereira, C., Pinto, T. V., Santos, R. M., & Correia, N. (2024). Sustainable and Naturally Derived Wet Spun Fibers: A Systematic Literature Review. Fibers, 12(9), 75. https://doi.org/10.3390/fib12090075