Structural Characterisation of End-of-Life Cement–Asbestos Materials from Lithuania
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. X-ray Fluorescence Characterisation
3.2. X-ray Diffraction Characterisation
3.3. Scanning Electron Microscopy Observation
3.4. Thermal Analysis Characterisation
3.5. Characterisation of Materials after Thermal Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virta, R.L. Mineral Commodity Profiles—Asbestos; Circular 1255-KK; U.S. Geological Survey: Reston, VA, USA, 2005.
- Ciullo, P.A. Industrial Minerals and Their Uses—A Handbook and Formulary, 1st ed.; William Andrew Publishing: New York, NY, USA, 1996. [Google Scholar]
- Gualtieri, A.F. Mineral Fibres: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; European Mineralogical Union: London, UK, 2017. [Google Scholar]
- Sporn, T.A. Mineralogy of asbestos. In Malignant Mesothelioma; Tannapfel, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–11. [Google Scholar]
- Howe-Grant, M. Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Wallis, S.L.; Emmett, E.A.; Hardy, R.; Casper, B.B.; Blanchon, D.J.; Testa, J.R.; Menges, C.W.; Gonneau, C.; Jerolmack, D.J.; Seiphoori, A.; et al. Challenging global waste management—Bioremediation to detoxify asbestos. Front. Environ. Sci. 2020, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.X.L.; Jaurand, M.-C.; Kamp, D.W.; Whysner, J.; Hei, T.K. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. J. Toxicol. Environ. Health B Crit. Rev. 2011, 1–4, 179–245. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.J.; More, S.L.; Maddaloni, M.A.; Fung, E.S. Evaluation of potential gastrointestinal carcinogenicity associated with the ingestion of asbestos. Rev. Environ. Health 2021, 26, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.; Kang, D.; Paek, D. Environmental exposure to asbestos and the risk of lung cancer: A systematic review and meta-analysis. J. Occup. Environ. Med. 2022, 79, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Musk, A.W.; de Klerk, N.; Reid, A.; Hui, J.; Franklin, P.; Brims, F. Asbestos-related diseases. Int. J. Tuberc. Lung Dis. 2020, 24, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Stayner, L.; Welch, L.S.; Lemen, R. The worldwide pandemic asbestos-related diseases. Annu. Rev. Public Health 2013, 34, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.T.; Chien, L.C.; Jimba, M.; Furuya, S.; Takahashi, K. Implementation of national policies for a total asbestos ban: A global comparison. Lancet Planet Health 2019, 3, 341–348. [Google Scholar] [CrossRef]
- The International Ban Asbestos Secretariat IBAS. Available online: www.ibasecretariat.org/index.htm (accessed on 18 December 2023).
- Ulewicz, M. Management of asbestos materials in terms of life and work safety. Przegląd Bud. 2023, 9/10, 171–176. (In Polish) [Google Scholar] [CrossRef]
- Flanagan, D.M. Mineral Commodity Summaries. Asbestos 2022; U.S. Geological Survey: Reston, VA, USA, 2023.
- European Commission. European Commission Directive 1999/77/EC, 26 July 1999; European Commission: Brussels, Belgium, 1999. Available online: https://eur-lex.europa.eu/eli/dir/1999/77/oj (accessed on 13 December 2023).
- Sejm of the Republic of Poland. Act on the Prohibition of the Use of Asbestos-Containing Products, 19 June 1997; Sejm of the Republic of Poland: Warsaw, Poland, 1997. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU19971010628 (accessed on 13 December 2023). (In Polish)
- Council of Ministers of the Republic of Poland. Program for the Removal of Asbestos and Asbestos-Containing Products Used in Poland; Polish Government: Warsaw, Poland, 2002.
- Smolianskiene, G.; Adamoniene, D.; Šeškauskas, V. Studies on occupational asbestos in Lithuania: Achievements and problems. Indoor Built Environ. 2005, 14, 331–335. [Google Scholar] [CrossRef]
- Smailyte, G.; Kurtinaitis, J.; Andersen, A. Cancer mortality and morbidity among Lithuanian asbestos-cement producing workers. Scand. J. Work Environ. Health 2004, 30, 64–70. [Google Scholar] [CrossRef]
- Smailyte, G.; Kurtinaitis, J.; Andersen, A. Mortality and cancer incidence among Lithuanian cement producing workers. Occup. Environ. Med. 2004, 61, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Kanarek, M.S. Mesothelioma from chrysotile asbestos: Update. Ann. Epidemiol. 2011, 21, 688–697. [Google Scholar] [CrossRef] [PubMed]
- European Commission. European Commission Directive 80/1107/EEC, 27 November 1980; European Commission: Brussels, Belgium, 1980. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:31980L1107 (accessed on 13 December 2023).
- European Commission. European Commission Directive 83/477/EEC, 19 September 1983; European Commission: Brussels, Belgium, 1983. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31983L0477 (accessed on 13 December 2023).
- European Commission. European Commission Directive 91/382/EEC, 25 June 1991; European Commission: Brussels, Belgium, 1991. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31991L0382 (accessed on 13 December 2023).
- Petrauskait Everatt, R.; Smolianskienė, G.; Tossavainen, A.; Cicėnas, S.; Jankauskas, R. Occupational characteristics of respiratory cancer patients exposed to asbestos in Lithuania. J. Phys. Conf. Ser. 2009, 151, 012012. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Lipowska, B.; Kujawa, M.; Gerle, A. Problem of asbestos-containing wastes in Poland. Clean. Waste Syst. 2023, 4, 100085. [Google Scholar] [CrossRef]
- Brzana, W.; Buczaj, A.; Nowak, J.; Nowak, D. Concentrations of asbestos fibres at wild asbestos wastes damping grounds. Med. Og. Nauk Zdr. 2014, 20, 98–101. (In Polish) [Google Scholar]
- Opinion of the European Economic and Social Committee on ‘An EU without Asbestos’; OJ C 251, 31.7.2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52014IE5005&qid=1712828554838 (accessed on 13 December 2023).
- EU Parliament, Document 52020DC0098, A New Circular Economy Action Plan for a Cleaner and More Competitive Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN (accessed on 18 December 2023).
- Gualtieri, A.F. Recycling asbestos-containing material (ACM) from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Pacheco-Torgal, F., Tam, V.W.Y., Labrincha, J.A., Ding, Y., de Brito, J., Eds.; Woodhead Publishing: Cambridge, UK, 2013; Volume 47, pp. 500–525. [Google Scholar]
- Spasiano, D.; Pirozzi, F. Treatments of asbestos-containing wastes. J. Environ. Manag. 2017, 204, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Paolini, V.; Tomassetti, L.; Segreto, M.; Borin, D.; Liotta, F.; Torre, M.; Petracchini, F. Asbestos treatment technologies. J. Mater. Cycles Waste Manag. 2019, 21, 205–226. [Google Scholar] [CrossRef]
- Lim, Y.; Jang, H.; So, S. Evaluation of mineral carbonation of asbestos-tex and analysis of airborne asbestos concentrations. Buildings 2022, 12, 1372. [Google Scholar] [CrossRef]
- Trapasso, F.; Croci, D.; Plescia, P.; Tempesta, E. Asbestos waste carbonation: A new asbestos treatment with CO2 recovery. In Proceedings of the 3rd International Conference on Industrial and Hazardous Waste Management, Chania, Greece, 12–14 September 2012; pp. 1–8. [Google Scholar]
- Oskierski, H.C.; Dlugogorski, B.Z.; Jacobsen, G. Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem. Geol. 2013, 358, 156–169. [Google Scholar] [CrossRef]
- Saran, R.K.; Arora, V.; Yadav, S. CO2 sequestration by mineral carbonation: A review. Glob. NEST J. 2018, 20, 497–503. [Google Scholar]
- Brycht, N. Recycling of asbestos-cement waste—An opportunity or a threat? CzOTO 2022, 4, 10–18. [Google Scholar] [CrossRef]
- Sobik-Szołtysek, J. Asbestos waste in Poland—The present state and perspectives of management. In Inżynieria Środowiska I Biotechnologia. Wyzwania i Nowe Technologie; Rosińska, A., Karwowska, B., Madeła, M., Eds.; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2023; pp. 294–318. (In Polish) [Google Scholar]
- Obmiński, A. Asbestos waste recycling using the microwave technique—Benefits and risks. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100577. [Google Scholar] [CrossRef]
- Bloise, A.; Kusiorowski, R.; Lassinantti Gualtieri, M.; Gualtieri, A.F. Thermal behaviour of mineral fibres. In Mineral Fibres: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; Gualtieri, A.F., Ed.; European Mineralogical Union: London, UK, 2017; pp. 215–260. [Google Scholar]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Adamek, J. Thermal decomposition of different types of asbestos. J. Therm. Anal. Calorim. 2012, 109, 693–704. [Google Scholar] [CrossRef]
- Zaremba, T.; Krząkała, A.; Piotrowski, J.; Garczorz, D. Study on the thermal decomposition of chrysotile asbestos. J. Therm. Anal. Calorim. 2010, 101, 479–485. [Google Scholar] [CrossRef]
- Cattaneo, A.; Gualtieri, A.F.; Artioli, G. Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Phys. Chem. Miner. 2003, 30, 177–183. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Levy, D.; Belluso, E.; Dapiaggi, M. Kinetics of the decomposition of crocidolite asbestos: A preliminary real-time X-ray powder diffraction study. Mater. Sci. Forum 2004, 443–444, 291–294. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Giacobbe, C.; Sardisco, L.; Saraceno, M.; Gualtieri, M.L.; Lusvardi, G.; Cavenati, C.; Zanatto, I. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications. Waste Manag. 2011, 31, 91–100. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Tartaglia, A. Thermal decomposition of asbestos and recycling in traditional ceramics. J. Europ. Ceram. Soc. 2000, 20, 1409–1418. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Cavenati, C.; Zanatto, I.; Meloni, M.; Elmi, G.; Gualtieri, M.L. The transformation sequence of cement-asbestos slates up to 1200 °C and safe recycling of the reaction product in stoneware tile mixtures. J. Hazard. Mater. 2008, 152, 563–570. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Gerle, A. Thermal decomposition of asbestos-containing materials. J. Therm. Anal. Calorim. 2013, 113, 179–188. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Podwórny, J. Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture. J. Mater. Sci. 2015, 50, 6757–6767. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Lipowska, B.; Gerle, A. Synthesis of ye’elimite from anthropogenic waste. Minerals 2023, 13, 137. [Google Scholar] [CrossRef]
- Vergani, F.; Galimberti, L.; Marian, N.M.; Giorgetti, G.; Viti, C.; Capitani, G. Thermal decomposition of cement–asbestos at 1100 °C: How much “safe” is “safe”? J. Mater. Cycles Waste Manag. 2022, 24, 297–310. [Google Scholar] [CrossRef]
- EN ISO 12677:2011; Chemical Analysis of Refractory Products by X-ray Fluorescence (XRF)—Fused Cast-Bead Method. ISO: Geneva, Switzerland, 2011.
- Viani, A.; Gualtieri, A.F.; Secco, M.; Peruzzo, L.; Artioli, G.; Cruciani, G. Crystal chemistry of cement-asbestos. Am. Mineral. 2013, 98, 1095–1105. [Google Scholar] [CrossRef]
- Dias, C.M.R.; Cincotto, M.A.; Savastano, H., Jr.; John, V.M. Long-term aging of fiber-cement corrugated sheets—The effect of carbonation, leaching and acid rain. Cem. Concr. Compos. 2008, 30, 255–265. [Google Scholar] [CrossRef]
- Martin, C.J. The thermal decomposition of chrysotile. Mineral. Mag. 1977, 35, 189–195. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Meinhold, R.H. Thermal reactions of chrysotile revisited: A 29Si and 25Mg MAS NMR study. Am. Mineral. 1994, 79, 43–50. [Google Scholar]
- Giacobbe, C.; Gualtieri, A.F.; Quartieri, S.; Rinaudo, C.; Allegrina, M.; Andreozzi, G.B. Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). Eur. J. Mineral. 2010, 22, 535–546. [Google Scholar] [CrossRef]
- Belardi, C.; Piga, L. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products. Thermochim. Acta 2013, 573, 220–228. [Google Scholar] [CrossRef]
- Viani, A.; Gualtieri, A.F.; Pollastri, S.; Rinaudo, C.; Croce, A.; Urso, G. Crystal chemistry of the high temperature product of transformation of cement-asbestos. J. Hazard. Mater. 2013, 248–249, 69–80. [Google Scholar] [CrossRef]
- Witek, J.; Kusiorowski, R. Neutralization of cement-asbestos waste by melting in an arc-resistance furnace. Waste Manag. 2017, 69, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Kusiorowski, R.; Gerle, A.; Kujawa, M.; Śliwa, A.; Adamek, J. Characterisation of asbestos-containing wastes by thermal analysis. J. Therm. Anal. Calorim. 2024, submitted.
- Scrivener, K.; Nonat, A. Hydration of cementitious materials, present and future. Cem. Concr. Res. 2011, 41, 651–665. [Google Scholar] [CrossRef]
Poland | Lithuania | |
---|---|---|
Estimated amount of asbestos wastes; mln tonnes | 15.5 | 4.5 |
The number of residents; mln | 37.7 | 2.8 |
Area of the country; km2 | 313,000 | 63,500 |
Asbestos wastes per person; tons/person | 0.4 | 1.6 |
Asbestos wastes per area; tons/km2 | 49.5 | 71.0 |
Sample | TR | V2 | V5 |
---|---|---|---|
SiO2 | 33.1 ± 1.5 | 33.4 ± 1.5 | 32.1 ± 1.4 |
TiO2 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 |
Al2O3 | 3.6 ± 0.3 | 3.8 ± 0.3 | 3.9 ± 0.3 |
Fe2O3 | 5.2 ± 0.2 | 3.4 ± 0.1 | 3.1 ± 0.1 |
MgO | 6.5 ± 0.5 | 5.7 ± 0.4 | 5.6 ± 0.4 |
CaO | 25.5 ± 1.2 | 33.5 ± 1.6 | 29.2 ± 1.4 |
Na2O | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 |
K2O | 0.6 ± 0.1 | 0.3 ± 0.1 | 0.3 ± 0.1 |
SO3 | 0.3 ± 0.1 | 0.4 ± 0.1 | 0.6 ± 0.2 |
LOI | 24.7 ± 2.5 | 18.8 ± 1.9 | 24.7 ± 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusiorowski, R.; Gerle, A.; Kujawa, M.; Antonovič, V.; Boris, R. Structural Characterisation of End-of-Life Cement–Asbestos Materials from Lithuania. Fibers 2024, 12, 37. https://doi.org/10.3390/fib12040037
Kusiorowski R, Gerle A, Kujawa M, Antonovič V, Boris R. Structural Characterisation of End-of-Life Cement–Asbestos Materials from Lithuania. Fibers. 2024; 12(4):37. https://doi.org/10.3390/fib12040037
Chicago/Turabian StyleKusiorowski, Robert, Anna Gerle, Magdalena Kujawa, Valentin Antonovič, and Renata Boris. 2024. "Structural Characterisation of End-of-Life Cement–Asbestos Materials from Lithuania" Fibers 12, no. 4: 37. https://doi.org/10.3390/fib12040037
APA StyleKusiorowski, R., Gerle, A., Kujawa, M., Antonovič, V., & Boris, R. (2024). Structural Characterisation of End-of-Life Cement–Asbestos Materials from Lithuania. Fibers, 12(4), 37. https://doi.org/10.3390/fib12040037