Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance
Abstract
:1. Introduction
2. Physical Properties and Their Measurements
- -
- With coaxial transmission lines, planar specimens are investigated. Sample preparation needs to be done carefully; measurements necessitate reference measurements which makes them time-consuming, necessitating minutes to hours for each spectrum. This technique is usually applied in the frequency range from 10 kHz to 1 GHz.
- -
- In the open field (free space) method, a large distance (30 m) is applied between the device and the receiving antenna. Differences in product assembly may lead to large differences in the results, reducing the reproducibility of these measurements.
- -
- The shielded box method uses a metal box with a sample port in one wall. The receiving antenna is inside the box, the transmitting antenna outside. The electrical contact between the test specimens and the shielded box is difficult to establish; besides, the frequency range is limited to approximately 500 MHz. Reproducibility was shown to be low, comparing investigations in different laboratories.
- -
- The shielded room method is similar to the shielded box method. An anechoic chamber, usually with a ground area 2.5 m2, is used for this test, resulting in the necessity to use large test specimens to investigate shielding between the transmitting and the receiving antenna, making this method unsuitable for specimens which can only be produced in small sizes [26].
3. MXene
3.1. Different MXenes and Their Preparation
3.2. MXene Coatings
3.3. MXene Fibers
4. Metals
4.1. Metal Coatings
4.2. Metal Wires
5. Carbon
5.1. Carbon Coatings
5.2. Carbon Fibers and Filaments
6. Intrinsically Conductive Polymers
7. Summary and Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Li, S.N.; Liu, M.Y.; Zhou, Y. Review on Shielding Mechanism and Structural Design of Electromagnetic Interference Shielding Composites. Macromol. Mater. Eng. 2021, 306, 2100032. [Google Scholar] [CrossRef]
- Peng, M.Y.; Qin, F.X. Clarification of basic concepts for electromagnetic interference shielding effectiveness. J. Appl. Phys. 2021, 130, 225108. [Google Scholar] [CrossRef]
- Guan, H.T.; Chung, D.D.L. Absorption-dominant radio-wave attenuation loss of metals and graphite. J. Mater. Sci. 2021, 56, 8037–8047. [Google Scholar] [CrossRef]
- Dai, M.W.; Zhai, Y.H.; Zhang, Y. A green approach to preparing hydrophobic, electrically conductive textiles based on waterborne polyurethane for electromagnetic interference shielding with low reflectivity. Chem. Eng. J. 2021, 421, 127749. [Google Scholar] [CrossRef]
- Mocha, J.; Wójcik, D.; Surma, M. Immunity of medical electrical equipment to radiated RF disturbances. Proc. SPIE 2018, 10715, 1071507. [Google Scholar]
- Wu, J.H.; Chung, D.D.L. Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 2002, 40, 445–467. [Google Scholar] [CrossRef]
- Roh, J.-S.; Chi, Y.-S.; Kang, T.J. Electromagnetic shielding effectiveness of multifunctional metal composite fabrics. Text. Res. J. 2008, 78, 825–835. [Google Scholar] [CrossRef]
- Ren, S.; Guo, S.; Liu, X.; Liu, Q. Shielding effectiveness of double-layer magnetic shield of current comparator under radial disturbing magnetic field. IEEE Trans. Magn. 2016, 52, 9401907. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A.; Malczyk, M.; Stasiak, A.; Osadnik, R.; Paluch, R.; Koruszowic, M.; Pawlyta, J.; Lis, K.; Lehrich, K. Plant growth in microgravity and defined magnetic field. In Proceedings of the International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, East Africa, 7–8 October 2021; pp. 1–8. [Google Scholar]
- Yao, Y.Y.; Jin, S.H.; Zou, H.M.; Li, L.J.; Ma, X.L.; Lv, G.; Gao, F.; Lv, X.J.; Shu, Q.H. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 2021, 56, 6549–6580. [Google Scholar] [CrossRef]
- Duan, Y.P.; Liu, S.H.; Guan, H.T. Investigation of electrical conductivity and electromagnetic shielding effectiveness of polyaniline composite. Sci. Technol. Adv. Mater. 2005, 6, 513–518. [Google Scholar]
- Liang, R.R.; Cheng, W.J.; Xiao, H.; Shi, M.W.; Tang, Z.H.; Wang, N. A calculating method for the electromagnetic shielding effectiveness of metal fiber blended fabric. Text. Res. J. 2018, 88, 973–986. [Google Scholar] [CrossRef]
- Blachowicz, T.; Hütten, A.; Ehrmann, A. Electromagnetic Interference Shielding with Electrospun Nanofiber Mats—A Review of Production, Physical Properties and Performance. Fibers 2022, 10, 47. [Google Scholar] [CrossRef]
- Chung, D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon 2001, 39, 279–285. [Google Scholar] [CrossRef]
- Knittel, D.; Schollmeyer, E. Electrically high-conductive textiles. Synth. Met. 2009, 159, 1433–1437. [Google Scholar] [CrossRef]
- Kacprzyk, R. Measurement of the volume and surface resistance of textile materials. Fibres Text. East. Eur. 2011, 19, 47–49. [Google Scholar]
- Meding, J.T.; Tuvshinbayar, K.; Döpke, C.; Tamoue, F. Textile electrodes for bioimpedance measuring. Commun. Dev. Assem. Text. Prod. 2021, 2, 49–60. [Google Scholar] [CrossRef]
- Schwarz-Pfeiffer, A.; Obermann, M.; Weber, M.O.; Ehrmann, A. Smarten up garments through knitting. IOP Conf. Ser. Mater. Sci. Eng. 2016, 141, 012008. [Google Scholar] [CrossRef] [Green Version]
- Pakdel, E.; Wang, J.F.; Kashi, S.; Sun, L.; Wang, X.G. Advances in photocatalytic self-cleaning, superhydrophobic and electromagnetic interference shielding textile treatments. Adv. Coll. Interf. Sci. 2020, 277, 102116. [Google Scholar] [CrossRef]
- Ehrmann, G.; Blachowicz, T.; Homburg, S.V.; Ehrmann, A. Measuring biosignals with single circuit boards. Bioengineering 2022, 9, 84. [Google Scholar] [CrossRef]
- Schneider, V.; Reinholdt, A.; Kreibig, U.; Weirich, T.; Güntherodt, G.; Beschoten, B.; Tillmanns, A.; Krenn, H.; Rumpf, K.; Granitzer, P. Structural and magnetic properties of Ni/NiOxide- and Co/CoOxide core/shell nanoparticles and their possible use for ferrofluids. Z. Phys. Chem. 2006, 220, 173–187. [Google Scholar] [CrossRef]
- Blachowicz, T.; Tillmanns, A.; Fraune, M.; Beschoten, B.; Güntherodt, G. Exchange-bias in (110)-oriented CoO/Co bilayers with different magnetocrystalline anisotropies. Phys. Rev. B 2007, 75, 054425. [Google Scholar] [CrossRef]
- Regtmeier, A.; Meyer, J.; Mill, N.; Peter, M.; Weddemann, A.; Mattay, J.; Hütten, A. Influence of nanoparticular impurities on the magnetic anisotropy of self-assembled magnetic co-nanoparticles. J. Magn. Magn. Mater. 2013, 326, 112–115. [Google Scholar] [CrossRef]
- Wang, L.; Dong, X.; Gai, G.; Zhao, L.; Xu, S.; Xiao, X. One-pot facile electrospinning construct of flexible Janus nanofibers with tunable and enhanced magnetism-photoluminescence bifunctionality. J. Nanopart. Res. 2015, 17, 91. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, A.; Mahltig, B. Magneto-optic measurements on uneven magnetic layers on cardboard. AIP Adv. 2017, 7, 045306. [Google Scholar] [CrossRef]
- Geetha, S.; Kumar, K.K.S.; Rao, C.R.K.; Vijayan, M.; Trivedi, D.C. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef]
- Barsoum, M.W. The Mn+1AXn phases: A new class of solids. Prog. Solid State Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Sinha, A.; Dhanjai; Zhao, H.M.; Huang, Y.J.; Lu, X.B.; Chen, J.P.; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC Trends Anal. Chem. 2018, 105, 424–435. [Google Scholar] [CrossRef]
- Zhang, C.; McKeon, L.; Kremer, M.P.; Park, S.-H.; Ronan, O.; Seral-Ascasco, A.; Barwich, S.; Coileáin, C.Ó.; McEvoy, N.; Nerl, H.C.; et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795. [Google Scholar] [CrossRef] [Green Version]
- Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, S.J.; Kim, Y.-J.; Lim, Y.H.; Chae, Y.J.; Lee, B.J.; Kim, Y.-T.; Han, H.; Gogotsi, Y.; Ahn, C.W. Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 2020, 8, 573–581. [Google Scholar] [CrossRef]
- Li, E.; Pan, Y.M.; Wang, C.F.; Liu, C.T.; Shen, C.Y.; Pan, C.F.; Liu, X.H. Asymmetric Superhydrophobic Textiles for Electromagnetic Interference Shielding, Photothermal Conversion, and Solar Water Evaporation. ACS Appl. Mater. Interfaces 2021, 13, 28996–29007. [Google Scholar] [CrossRef]
- Zheng, X.H.; Wang, P.; Zhang, X.S.; Hu, Q.L.; Wang, Z.Q.; Nie, W.Q.; Zou, L.H.; Li, C.L.; Han, X. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. Compos. A Appl. Sci. Manuf. 2022, 152, 106700. [Google Scholar] [CrossRef]
- Zhang, X.S.; Wang, X.F.; Lei, Z.W.; Wang, L.L.; Tian, M.W.; Zhu, S.F.; Xiao, H.; Tang, X.N.; Qu, L.J. Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances. ACS Appl. Mater. Interfaces 2020, 12, 14459–14467. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.C.; Deng, C.; Seidi, F.; Yong, Q.; Lou, Z.C.; Meng, L.C.; Liu, J.W.; Huang, C.; Liu, Y.Q.; Wu, W.B.; et al. Air-permeable and flexible multifunctional cellulose-based textiles for bio-protection, thermal heating conversion, and electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 17452–17463. [Google Scholar] [CrossRef]
- Yu, J.; Cui, Z.L.; Lu, J.Y.; Zhao, J.L.; Zhang, Y.; Fan, G.Q.; Liu, S.Y.; He, Y.B.; Yu, Y.H.; Qi, D.M. Integrated hierarchical macrostructures of flexible basalt fiber composites with tunable electromagnetic interference (EMI) shielding and rapid electrothermal response. Compos. B Eng. 2021, 224, 109193. [Google Scholar] [CrossRef]
- Yao, D.J.; Tang, Z.H.; Liang, Z.H.; Zhang, L.; Sun, Q.-J.; Fan, J.M.; Zhong, G.K.; Liu, Q.-X.; Jiang, Y.-P.; Tang, X.-G.; et al. Adhesive, multifunctional, and wearable electronics based on MXene-coated textile for personal heating systems, electromagnetic interference shielding, and pressure sensing. J. Coll. Interface Sci. 2023, 630, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Uzun, S.; Han, M.K.; Strobel, C.J.; Hantanasirisakul, K.; Goad, A.; Dion, G.; Gogotsi, Y. Highly conductive and scalable Ti3C2Tx-coated fabrics for efficient electromagnetic interference shielding. Carbon 2021, 174, 382–389. [Google Scholar] [CrossRef]
- Taghizadeh, A.; Taghizadeh, M.; Jouyandeh, M.; Khodadadi Yazdi, M.; Zarrintaj, P.; Saeb, M.R.; Lima, E.C.; Gupta, V.K. Conductive polymers in water treatment: A review. J. Mol. Liq. 2020, 312, 113447. [Google Scholar] [CrossRef]
- Wang, Q.-W.; Zhang, H.-B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.X.; Yang, R.; Koratkar, N.; Yu, Z.-Z. Multifunctional and Water-Resistant MXene-Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29, 1806819. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Y.; Wang, W.; Qu, Z.J.; Yu, D. A Flexible Electromagnetic Interference Shielding Fabric Prepared by Construction of PANI/MXene Conductive Network via Layer-by-Layer Assembly. Adv. Mater. Interfaces 2021, 8, 2001893. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.X.; Yang, L.Y.; Yin, S.G. Ti3C2Tx/PANI/Liquid Metal Composite Microspheres with 3D Nanoflower Structure: Preparation, Characterization, and Applications in EMI Shielding. Adv. Mater. Interfaces 2022, 9, 2102266. [Google Scholar] [CrossRef]
- Yin, G.; Wang, Y.; Wang, W.; Yu, D. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Coll. Surf. A Physicochem. Eng. Asp. 2020, 601, 125047. [Google Scholar] [CrossRef]
- Liu, L.-X.; Chen, W.; Zhang, H.-B.; Wang, Q.-W.; Guan, F.L.; Yu, Z.-Z. Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity. Adv. Funct. Mater. 2019, 29, 1905197. [Google Scholar] [CrossRef]
- Zheng, X.H.; Tang, J.H.; Cheng, L.Z.; Yang, H.W.; Zou, L.H.; Li, C.L. Superhydrophobic hollow magnetized Fe3O4 nanospheres/MXene fabrics for electromagnetic interference shielding. J. Alloy. Comp. 2023, 934, 167964. [Google Scholar] [CrossRef]
- Zhang, D.B.; Yin, R.; Zheng, Y.J.; Li, Q.M.; Liu, H.; Liu, C.T.; Shen, C.Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587. [Google Scholar] [CrossRef]
- Liu, L.-X.; Chen, W.; Zhang, H.-B.; Zhang, Y.; Tang, P.P.; Li, D.Y.; Deng, Z.M.; Ye, L.X.; Yu, Z.-Z. Tough and electrically conductive Ti3C2Tx MXene–based core–shell fibers for high–performance electromagnetic interference shielding and heating application. Chem. Eng. J. 2022, 430, 133074. [Google Scholar] [CrossRef]
- Liu, L.-X.; Chen, W.; Zhang, H.-B.; Ye, L.X.; Wang, Z.G.; Zhang, Y.; Min, P.; Yu, Z.-Z. Super-Tough and Environmentally Stable Aramid. Nanofiber@MXene Coaxial Fibers with Outstanding Electromagnetic Interference Shielding Efficiency. Nano-Micro Lett. 2022, 14, 111. [Google Scholar] [CrossRef]
- Zhou, T.Z.; He, Y.Z.; He, B.; Wang, Z.; Xiong, T.; Wang, Z.X.; Liu, Y.T.; Xin, J.W.; Qi, M.; Zhang, H.Z.; et al. Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses. Nat. Commun. 2022, 13, 4564. [Google Scholar] [CrossRef]
- Xiong, J.H.; Zheng, H.W.; Ding, R.J.; Li, P.Y.; Liu, Z.L.; Zhao, X.; Xue, F.H.; Chen, Z.; Yan, Q.; Peng, Q.Y.; et al. Multifunctional non-woven fabrics based on interfused MXene fibers. Mater. Des. 2022, 223, 111207. [Google Scholar] [CrossRef]
- Zheng, X.H.; Tang, J.H.; Wang, P.; Wang, Z.Q.; Zou, L.H.; Li, C.L. Interfused core-shell heterogeneous graphene/MXene fiber aerogel for high-performance and durable electromagnetic interference shielding. J. Coll. Interface Sci. 2022, 628, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Mott, N.F. The electrical conductivity of transition metals. Proc. R. Soc. A 1936, 153, 699–717. [Google Scholar]
- Laman, N.; Grischkowsky, D. Terahertz conductivity of thin metal films. Appl. Phys. Lett. 2008, 93, 051105. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.L.; Lu, C.H.; Zhang, K. Textile-Based Strain Sensor for Human Motion Detection. Energy Environ. Mater. 2020, 3, 80–100. [Google Scholar] [CrossRef] [Green Version]
- Pani, D.; Achilli, A.; Bonfiglio, A. Survey on Textile Electrode Technologies for Electrocardiographic (ECG) Monitoring, from Metal Wires to Polymers. Adv. Mater. Technol. 2018, 3, 1800008. [Google Scholar] [CrossRef]
- Wang, Z.N.; Wang, H.X.; Ji, S.; Wang, H.; Brett, D.J.L.; Wang, R.F. Design and synthesis of tremella-like Ni–Co–S flakes on co-coated cotton textile as high-performance electrode for flexible supercapacitor. J. Alloy. Comp. 2020, 814, 151789. [Google Scholar] [CrossRef]
- Ehrmann, A.; Blachowicz, T. Recent coating materials for textile-based solar cells. AIMS Mater. Sci. 2019, 6, 234–251. [Google Scholar] [CrossRef]
- Ma, K.K.; Islamoglu, T.; Chen, Z.J.; Li, P.; Wasson, M.C.; Chen, Y.W.; Wang, Y.F.; Peterson, G.W.; Xin, J.H.; Farha, O.K. Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal–Organic Framework Coating on Textile Fiber. J. Am. Chem. Soc. 2019, 141, 15626–15633. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Periyasamy, A.P.; Kremenakova, D.; Militky, J.; Tunak, M. Ultrathin Multilayer Textile Structure with Enhanced EMI Shielding and Air-Permeable Properties. Polymers 2021, 13, 4176. [Google Scholar] [CrossRef]
- Hu, S.; Wang, D.; Kyosev, Y.; Kremenakova, D.; Militky, J. The novel approach of EMI shielding simulation for metal coated nonwoven textiles with optimized textile module. Polym. Test. 2022, 114, 107706. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Yang, K.; Xiong, X.M.; Venkataraman, M.; Militky, J.; Mishra, R.; Kremenakova, D. Effect of silanization on copper coated milife fabric with improved EMI shielding effectiveness. Mater. Chem. Phys. 2020, 239, 122008. [Google Scholar] [CrossRef]
- Hong, S.W.; Yoo, S.S.; Lee, J.Y.; Yoo, P.J. Sonochemically activated synthesis of gradationally complexed Ag/TEMPO-oxidized cellulose for multifunctional textiles with high electrical conductivity, super-hydrophobicity, and efficient EMI shielding. J. Mater. Chem. C 2020, 8, 13990–13998. [Google Scholar] [CrossRef]
- Zong, J.-Y.; Zhou, X.-J.; Hu, Y.-F.; Yang, T.-B.; Yan, D.-X.; Lin, H.; Lei, J.; Li, Z.-M. A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance. Comp. B Eng. 2021, 225, 109299. [Google Scholar] [CrossRef]
- Jia, L.-C.; Zhang, G.Q.; Xu, L.; Sun, W.-J.; Zhong, G.-J.; Lei, J.; Yan, D.-X.; Li, Z.-M. Robustly Superhydrophobic Conductive Textile for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2019, 11, 1680–1688. [Google Scholar] [CrossRef] [PubMed]
- Moazzenchi, B.; Montazer, M. Click electroless plating of nickel nanoparticles on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties. Colloids Surf. A Physicochem. Eng. Asp. 2019, 571, 110–124. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Lu, Y.X. Silk Sericin as a Green Adhesive to Fabricate a Textile Strain Sensor with Excellent Electromagnetic Shielding Performance. ACS Appl. Mater. Interfaces 2021, 13, 28832–28842. [Google Scholar] [CrossRef]
- Bai, Y.; Qin, F.; Lu, Y.X. Multifunctional Electromagnetic Interference Shielding Ternary Alloy (Ni–W–P) Decorated Fabric with Wide-Operating-Range Joule Heating Performances. ACS Appl. Mater. Interfaces 2020, 12, 48016–48026. [Google Scholar] [CrossRef]
- Liu, J.C.; Lin, S.; Huang, K.; Jia, C.; Wang, Q.M.; Li, Z.W.; Song, J.N.; Liu, Z.L.; Wang, H.Y.; Lei, M.; et al. A large-area AgNW-modified textile with high-performance electromagnetic interference shielding. NPJ Flex. Electron. 2020, 4, 10. [Google Scholar] [CrossRef]
- Jia, L.-C.; Ding, K.-Q.; Ma, R.-J.; Wang, H.-L.; Sun, W.-J.; Yan, D.-X.; Li, B.; Li, Z.-M. Highly Conductive and Machine-Washable Textiles for Efficient Electromagnetic Interference Shielding. Adv. Mater. Technol. 2019, 4, 1800503. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, W.X.; Liu, L.X.; Cheng, W.H.; Wang, W.; Liew, K.M.; Wang, B.; Hu, Y. Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chem. Eng. J. 2019, 372, 1077–1090. [Google Scholar] [CrossRef]
- Rybicki, T. EMI Shielding and Reflection From Textile Mesh Grids Compared With Analytic Models. EEE Trans. Electromagn. Compat. 2019, 61, 372–380. [Google Scholar] [CrossRef]
- Radulescu, I.R.; Surdu, L.; Scarlat, R.; Constantin, C.; Mitu, B.; Morari, C.; Costea, M. Modelling the Woven Structures with Inserted Conductive Yarns Coated with Magnetron Plasma and Testing Their Shielding Effectiveness. Textiles 2021, 1, 4–20. [Google Scholar] [CrossRef]
- Onder, E.; Noyan, E.C.B.; Duru, S.C.; Candan, C.; Paker, S.; Sayar, R. Smart Protective Clothing for Aircraft Crew. In Advances in Sustainable Aviation; Karakoç, T., Colpan, C., Şöhret, Y., Eds.; Springer: Cham, Switzerland, 2018; pp. 221–235. [Google Scholar]
- Vahle, D.; Böttjer, R.; Heyden, K.; Ehrmann, A. Conductive polyacrylonitrile/graphite textile coatings. AIMS Mater. Sci. 2018, 5, 551–558. [Google Scholar] [CrossRef]
- Isaia, C.; McMaster, S.; McNally, D. The effect of washing on the electrical performance of knitted textile strain sensors for quantifying joint motion. J. Industr. Text. 2022, 51, 8528S–8548S. [Google Scholar] [CrossRef]
- Böhnke, P.R.C.; Winger, H.; Wieczorek, F.; Warncke, M.; Lüneburg, L.M.; Kruppke, I.; Nocke, A.; Häntzsche, E.; Cherif, C. Protective Coating for Electrically Conductive Yarns for the Implementation in Smart Textiles. Solid State Phenom. 2022, 333, 11–20. [Google Scholar] [CrossRef]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; de Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef]
- Jia, L.-C.; Jia, X.-X.; Sun, W.-J.; Zhang, Y.-P.; Du, L.; Yan, D.-X.; Su, H.-J.; Li, Z.-M. Stretchable Liquid Metal-Based Conductive Textile for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2020, 12, 53230–53238. [Google Scholar] [CrossRef]
- Ehrmann, G.; Ehrmann, A. Electronic textiles. Encyclopedia 2021, 1, 115–130. [Google Scholar] [CrossRef]
- Atalay, O.; Kalaoglu, F.; Bahadir, S.K. Development of textile-based transmission lines using conductive yarns and ultrasonic welding technology for e-textile applications. J. Eng. Fibers Fabr. 2019, 14, 1558925019856603. [Google Scholar] [CrossRef]
- Nigusse, A.B.; Mengistie, D.A.; Malengier, B.; Tseghai, G.B.; van Langenhove, L. Wearable Smart Textiles for Long-Term Electrocardiography Monitoring—A Review. Sensors 2021, 21, 4174. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Textile-Based Sensors for Biosignal Detection and Monitoring. Sensors 2021, 21, 6042. [Google Scholar] [CrossRef] [PubMed]
- Simegnaw, A.A.; Malengier, B.; Tadesse, M.G.; van Langenhove, L. Development of Stainless Steel Yarn with Embedded Surface Mounted Light Emitting Diodes. Materials 2022, 15, 2892. [Google Scholar] [CrossRef]
- Weber, M.O.; Akter, F.; Ehrmann, A. Shielding of static magnetic fields by textiles. Ind. Text. 2013, 64, 184–187. [Google Scholar]
- He, S.J.; Liu, Z.; Wang, H.Y.; Wang, X.C. Effect of needle loops on shielding effectiveness of electromagnetic shielding knitted fabrics. Text. Res. J. 2022, 93, 691–700. [Google Scholar] [CrossRef]
- Rubežienė, V.; Abraitienė, A.; Baltušnikaitė-Guzaitienė, J.; Varnaitė-Žuravliova, S.; Sankauskaitė, A.; Kancleris, Ž.; Ragulis, P.; Šlekas, G. The influence of distribution and deposit of conductive coating on shielding effectiveness of textiles. J. Text. Inst. 2018, 109, 358–367. [Google Scholar] [CrossRef]
- Mikinka, E.; Siwak, M. Experimental characterisation and prediction of shielding effectiveness for multilayer carbon fibre reinforced composite materials with varying configurations. Mater. Today Commun. 2022, 32, 104039. [Google Scholar] [CrossRef]
- Gupta, K.K.; Abbas, S.M.; Abhyankar, A.C. Effect of yarn composition and fabric weave design on microwave and EMI shielding properties of hybrid woven fabrics. J. Text. Inst. 2022, 113, 1862–1877. [Google Scholar] [CrossRef]
- Krishnasamy, J.; Ramasamy, A.; Das, A.; Basu, A. Electromagnetic absorption behaviour of carbon helical/coiled yarn woven and knitted fabrics and their composites. J. Thermoplast. Comp. Mater. 2018, 32, 357–382. [Google Scholar] [CrossRef]
- Li, J.; Shao, H.Q.; Shao, G.W.; Su, C.L.; Yu, Q.H.; Huang, Y.L.; Chen, N.L.; Jiang, J.H. Flexible Warp-Knitted Metal Mesh-Based Composites: An Effective EMI Shielding Material with Efficient Joule Heating. ACS Appl. Polym. Mater. 2022, 4, 7025–7041. [Google Scholar] [CrossRef]
- Shyr, T.-W.; Shie, J.-W. Electromagnetic shielding mechanisms using soft magnetic stainless steel fiber enabled polyester textiles. J. Magn. Magn. Mater. 2012, 324, 4127–4132. [Google Scholar] [CrossRef]
- Huang, C.-H.; Lin, J.-H.; Yang, R.-B.; Lin, C.-W.; Lou, C.-W. Metal/PET composite knitted fabrics and composites: Structural design and electromagnetic shielding effectiveness. J. Electron. Mater. 2012, 41, 2267–2273. [Google Scholar] [CrossRef]
- Allaer, K.; De Baere, I.; Lava, P.; Van Paepegem, W.; Degrieck, J. On the in-plane mechanical properties of stainless steel fibre reinforced ductile composites. Compos. Sci. Technol. 2014, 100, 34–43. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, C.; Zheng, Z.J. Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Adv. Energy Mater. 2021, 11, 2002838. [Google Scholar] [CrossRef]
- Sadi, M.S.; Pan, J.J.; Xu, A.C.; Cheng, D.S.; Cai, G.M.; Wang, X. Direct dip-coating of carbon nanotubes onto polydopamine-templated cotton fabrics for wearable applications. Cellulose 2019, 26, 7569–7579. [Google Scholar] [CrossRef]
- Yao, C.K.; Yuan, L.L.; Zhang, H.H.; Li, B.X.; Liu, J.Y.; Xi, F.N.; Dong, X.P. Facile surface modification of textiles with photocatalytic carbon nitride nanosheets and the excellent performance for self-cleaning and degradation of gaseous formaldehyde. J. Coll. Interface Sci. 2019, 533, 144–153. [Google Scholar] [CrossRef]
- Khan, J.; Ilyas, S.; Akram, B.; Ahmad, K.; Hafeez, M.; Siddiq, M.; Ashraf, M.A. Zno/NiO coated multi-walled carbon nanotubes for textile dyes degradation. Arab. J. Chem. 2018, 11, 880–896. [Google Scholar] [CrossRef]
- Lund, A.; van der Velden, N.M.; Persson, N.-K.; Hamedi, M.M.; Müller, C. Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon nanomaterials. Mater. Sci. Eng. R: Rep. 2018, 126, 1–29. [Google Scholar] [CrossRef]
- Müller, S.; Wieschollek, D.; Juhász Junger, I.; Schwenzfeier-Hellkamp, E.; Ehrmann, A. Back electrodes of dye-sensitized solar cells on textile fabrics. Optik 2019, 198, 163243. [Google Scholar] [CrossRef]
- Wang, C.Y.; Xia, K.L.; Wang, H.M.; Liang, X.P.; Yin, Z.; Zhang, Y.Y. Advanced Carbon for Flexible and Wearable Electronics. Adv. Mater. 2019, 31, 1801072. [Google Scholar] [CrossRef]
- Hengstermann, M.; Hasan, M.M.D.; Scheffler, C.; Abdkader, A.; Cherif, C.J. Development of a new hybrid yarn construction from recycled carbon fibres for high-performance composites. Part III: Influence of sizing on textile processing and composite properties. Thermoplast. Comp. Mater. 2019, 34, 409–430. [Google Scholar] [CrossRef]
- Gong, T.; Heravi, A.A.; Alsous, G.; Curosu, I.; Mechtcherine, V. The Impact-Tensile Behavior of Cementitious Composites Reinforced with Carbon Textile and Short Polymer Fibers. Appl. Sci. 2019, 9, 4048. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Deng, M.K. Tensile behavior of textile-reinforced composites made of highly ductile fiber-reinforced concrete and carbon textiles. J. Build. Eng. 2022, 57, 104824. [Google Scholar] [CrossRef]
- Alaghmandfard, A.; Sedighi, O.; Rezaei, N.T.; Abedini, A.A.; Khachatourian, A.M.; Toprak, M.S.; Seifalian, A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. Mater. Sci. Eng. C 2021, 120, 111756. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Li, B.M.; Yildiz, O.; Mills, A.C.; Flewwellin, T.J.; Bradford, P.D.; Jur, J.S. Iron-on carbon nanotube (CNT) thin films for biosensing E-Textile applications. Carbon 2020, 168, 673–683. [Google Scholar] [CrossRef]
- Hu, J.S.; Yu, J.S.; Li, Y.; Liao, X.Q.; Yan, X.W.; Li, L. Nano Carbon Black-Based High Performance Wearable Pressure Sensors. Nanomaterials 2020, 10, 664. [Google Scholar] [CrossRef] [Green Version]
- Schäl, P.; Juhász Junger, I.; Grimmelsmann, N.; Ehrmann, A. Development of graphite-based conductive textile coatings. J. Coat. Technol. Res. 2018, 15, 875–883. [Google Scholar] [CrossRef]
- Li, Y.C.; Huang, X.R.; Zeng, L.J.; Li, R.F.; Tian, H.F.; Fu, X.W.; Wang, Y.; Zhong, W.-H. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci. 2019, 54, 1036–1076. [Google Scholar] [CrossRef]
- Lan, C.T.; Guo, M.; Li, C.L.; Qiu, Y.P.; Ma, Y.; Sun, J.Q. Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2020, 12, 7477–7485. [Google Scholar] [CrossRef]
- Moonlek, B.; Wimolmala, E.; Markpin, T.; Sombatsompop, N.; Saenboonruang, K. Enhancing electromagnetic interference shielding effectiveness for radiation vulcanized natural rubber latex composites containing multiwalled carbon nanotubes and silk textile. Polym. Compos. 2020, 41, 396–4009. [Google Scholar] [CrossRef]
- Gupta, S.; Chang, C.; Anbalagan, A.K.; Lee, C.-H.; Tai, N.-H. Reduced graphene oxide/zinc oxide coated wearable electrically conductive cotton textile for high microwave absorption. Compos. Sci. Technol. 2020, 188, 107994. [Google Scholar] [CrossRef]
- Xu, C.L.; Zhao, J.N.; Chao, Z.; Wang, J.J.; Wang, W.L.; Zhang, X.H.; Li, Q.W. Developing thermal regulating and electromagnetic shielding textiles using ultra-thin carbon nanotube films. Compos. Commun. 2020, 21, 100409. [Google Scholar] [CrossRef]
- Sim, H.J.; Lee, D.W.; Kim, H.S.; Jang, Y.W.; Spinks, G.M.; Gambhir, S.; Officer, D.L.; Wallace, G.G.; Kim, S.J. Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 2019, 155, 499–505. [Google Scholar] [CrossRef]
- Ghosh, S.; Ganguly, S.; Das, P.; Das, T.K.; Bose, M.; Singha, N.K.; Das, A.K.; Das, N.C. Fabrication of Reduced Graphene Oxide/Silver Nanoparticles Decorated Conductive Cotton Fabric for High Performing Electromagnetic Interference Shielding and Antibacterial Application. Fibers Polym. 2019, 20, 1161–1171. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Qi, Q.B.; Xu, N.; Yu, D. Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose 2020, 27, 2829–2845. [Google Scholar] [CrossRef]
- Zhou, L.H.; Lan, C.T.; Yang, L.; Xu, Z.Z.; Chu, C.L.; Liu, Y.C.; Qiu, Y.P. The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding. Diam. Relat. Mater. 2020, 104, 107757. [Google Scholar] [CrossRef]
- Pakdel, E.; Kashi, S.; Baum, T.; Usman, K.A.S.; Razal, J.M.; Varley, R.; Wang, X.G. Carbon fibre waste recycling into hybrid nonwovens for electromagnetic interference shielding and sound absorption. J. Clean. Prod. 2021, 315, 128196. [Google Scholar] [CrossRef]
- Hu, Q.L.; Duan, Y.F.; Zheng, X.H.; Nie, W.Q.; Zou, L.H.; Xu, Z.Z. Lightweight, flexible, and highly conductive recycled carbon fiber felt for electromagnetic interference shielding. J. Alloy. Comp. 2023, 935, 168152. [Google Scholar] [CrossRef]
- Lin, M.-C.; Lin, J.-H.; Bao, L.M. Applying TPU blends and composite carbon fibers to flexible electromagnetic-shielding fabrics: Long-fiber-reinforced thermoplastics technique. Compos. A Appl. Sci. Manuf. 2020, 138, 106022. [Google Scholar] [CrossRef]
- Duan, N.M.; Shi, Z.Y.; Wang, J.L.; Wang, G.L.; Zhang, X.Z. Strong and Flexible Carbon Fiber Fabric Reinforced Thermoplastic Polyurethane Composites for High-Performance EMI Shielding Applications. Macromol. Mater. Eng. 2020, 305, 1900829. [Google Scholar] [CrossRef]
- Jia, L.-C.; Nie, R.-P.; Xu, L.; Yan, D.-X.; Lei, J.; Li, Z.-M. Carbonized cotton textile with hierarchical structure for superhydrophobicity and efficient electromagnetic interference shielding. Compos. A Appl. Sci. Manufact. 2021, 149, 106555. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, R.J.; Qu, M.C.; Zhou, J.F.; Ye, C.H.; Zhang, L.Y.; Cao, H.J.; Ge, D.T.; Chen, Q.J. Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering. Compos. Sci. Technol. 2021, 207, 108696. [Google Scholar] [CrossRef]
- Abdelal, N. Electromagnetic interference shielding of stitched carbon fiber composites. J. Ind. Text. 2020, 49, 773–790. [Google Scholar] [CrossRef]
- Liu, C.Y.; Kang, Z.X. Facile fabrication of conductive silver films on carbon fiber fabrics via two components spray deposition technique for electromagnetic interference shielding. Appl. Surf. Sci. 2019, 487, 1245–1252. [Google Scholar] [CrossRef]
- Tang, X.R.; Lin, G.; Liu, C.C.; Cao, T.; Xia, Y.Q.; Yi, K.Y.; Zhang, S.; Liu, X.B. Lightweight and tough multilayered composite based on poly(aryl ether nitrile)/carbon fiber cloth for electromagnetic interference shielding. Coll. Surf. A Physicochem. Eng. Asp. 2022, 650, 129578. [Google Scholar] [CrossRef]
- Duan, N.M.; Shi, Z.Y.; Wang, Z.H.; Zou, B.; Zhang, C.P.; Wang, J.L.; Xi, J.R.; Zhang, X.S.; Zhang, X.Z.; Wang, G.L. Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 2022, 214, 110382. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Ding, Y.; Guo, X.L.; Yu, G.H. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987. [Google Scholar] [CrossRef]
- Peng, Q.Y.; Chen, J.S.; Wang, T.; Peng, X.W.; Liu, J.F.; Wang, X.G.; Wang, J.M.; Zeng, H.B. Recent advances in designing conductive hydrogels for flexible electronics. InfoMat 2020, 2, 843–865. [Google Scholar] [CrossRef] [Green Version]
- Onggar, T.; Kruppke, I.; Cherif, C. Techniques and Processes for the Realization of Electrically Conducting Textile Materials from Intrinsically Conducting Polymers and Their Application Potential. Polymers 2020, 12, 2867. [Google Scholar] [CrossRef]
- Salado, M.; Lanceros-Mendez, S.; Lizundia, E. Free-standing intrinsically conducting polymer membranes based on cellulose and poly(vinylidene fluoride) for energy storage applications. Eur. Polym. J. 2021, 144, 110240. [Google Scholar] [CrossRef]
- Grancaric, A.M.; Jerkovic, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive polymers for smart textile applications. J. Ind. Text. 2018, 48, 612–642. [Google Scholar] [CrossRef]
- Prajapati, D.G.; Kandasubramanian, B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromol. Chem. Phys. 2019, 220, 1800561. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, T.; Stempien, Z.; Karbownik, I. EMI Shielding and Absorption of Electroconductive Textiles with PANI and PPy Conductive Polymers and Numerical Model Approach. Energies 2021, 14, 7746. [Google Scholar] [CrossRef]
- Zou, L.H.; Zhang, S.L.; Zheng, X.H.; Xu, Z.Z.; Li, C.L.; Yang, L.; Ruan, F.T.; Tan, S.C. Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding. Nano-Micro Lett. 2021, 13, 190. [Google Scholar] [CrossRef]
- Yu, Z.C.; Zhao, Y.H.; Liu, J.R.; Wang, Y.S.; Qin, Y.; Zhu, Z.Y.; Wu, C.; Peng, J.C.; He, H.L. Advancement in cellulose-based multifunctional high conductive PNIPAAm/PPy hydrogel/cotton composites for EMI shielding. Cellulose 2022, 29, 6963–6981. [Google Scholar] [CrossRef]
- Gahlout, P.; Choudhary, V. Microwave shielding behaviour of polypyrrole impregnated fabrics. Compos. B Eng. 2019, 175, 107093. [Google Scholar] [CrossRef]
- Ghosh, Y.; Ganguly, S.; Remanan, S.; Das, N.C. Fabrication and investigation of 3D tuned PEG/PEDOT: PSS treated conductive and durable cotton fabric for superior electrical conductivity and flexible electromagnetic interference shielding. Compos. Sci. Technol. 2019, 181, 107682. [Google Scholar] [CrossRef]
- Riaz, S.; Naz, S.; Younus, A.; Javid, A.; Akram, S.; Nosheen, A.; Ashraf, M. Layer by layer deposition of PEDOT, silver and copper to develop durable, flexible, and EMI shielding and antibacterial textiles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129486. [Google Scholar] [CrossRef]
- Siavashani, V.S.; Gursoy, N.C.; Montazer, M.; Altay, P. Stretchable Electromagnetic Interference Shielding Textile Using Conductive Polymers and Metal Nanoparticles. Fibers Polym. 2022, 23, 2748–2759. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Xu, Q.B.; Chen, Q.; Zhang, Y.Y.; Xu, Z.Z. Fabrication of durable and conductive cotton fabric using silver nanoparticles and PEDOT:PSS through mist polymerization. Appl. Surf. Sci. 2022, 592, 153314. [Google Scholar] [CrossRef]
- Liu, Q.Z.; Yi, C.; Chen, J.H.; Xia, M.; Lu, Y.; Wang, Y.D.; Liu, X.; Li, M.F.; Liu, K.; Wang, D. Flexible, breathable, and highly environmental-stable Ni/PPy/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas. Compos. B Eng. 2021, 215, 108752. [Google Scholar] [CrossRef]
- Duan, M.H.; Hou, Y.J.; Guo, M.; Li, X.P.; Li, X.; Wang, J.L.; Ma, Y. Tailoring Electromagnetic Interference Shielding Performance of Conductive Nanocomposite Coating Using Textile Substrates. Adv. Mater. Interfaces 2021, 8, 2101089. [Google Scholar] [CrossRef]
Material | Manufact. | Thickness | E/M Properties | f | SE/dB | Other Properties | Ref. |
---|---|---|---|---|---|---|---|
MXene | Coating | 0.62 mm | RS = 2.2 Ω, EC = 890 S/m | X-band | 35 | Joule heating, pressure sensing | [34] |
Coating | 0.33 mm | RS = 5 Ω | X-band | 39 | Joule heating, bactericidal | [36] | |
Wet-spun fibers | 0.5 mm | EC = 11,360 S/cm | X-band | 75 | Joule heating | [50] | |
Metals | Cu coating | 0.112 mm | RV = 1 Ωm…5 Ωm | 30 MHz–1.5 GHz | 55 | Air permeability | [60] |
Ni coating | Not given | RS < 2 Ω, HC ~ 100 Oe | X-band | 32 | Not reported | [66] | |
Carbon | CNT/graphene coating | 0.35 mm | EC = 64 S/m | X-band | 35 | Superhydrophobicity | [113] |
Carbon/PA6 nonwoven | 4.48 mm | EC = 34 S/m | X-band | 85 | Sound absorption | [120] | |
Conduct. polymers | PANI/PPy coating | 80 µm/56 µm | RS = 20 Ω/96 Ω | 2.5–18 GHz | 22/7 | Not reported | [135] |
PPy dip-coating | 0.37 mm | EC = 1.5 S/m | X-band | 40 | Joule heating | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowicz, T.; Wójcik, D.; Surma, M.; Magnuski, M.; Ehrmann, G.; Ehrmann, A. Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance. Fibers 2023, 11, 29. https://doi.org/10.3390/fib11030029
Blachowicz T, Wójcik D, Surma M, Magnuski M, Ehrmann G, Ehrmann A. Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance. Fibers. 2023; 11(3):29. https://doi.org/10.3390/fib11030029
Chicago/Turabian StyleBlachowicz, Tomasz, Dariusz Wójcik, Maciej Surma, Mirosław Magnuski, Guido Ehrmann, and Andrea Ehrmann. 2023. "Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance" Fibers 11, no. 3: 29. https://doi.org/10.3390/fib11030029
APA StyleBlachowicz, T., Wójcik, D., Surma, M., Magnuski, M., Ehrmann, G., & Ehrmann, A. (2023). Textile Fabrics as Electromagnetic Shielding Materials—A Review of Preparation and Performance. Fibers, 11(3), 29. https://doi.org/10.3390/fib11030029