Characterisation of Elementary Kenaf Fibres Extracted Using HNO3 and H2O2/CH3COOH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kenaf Fibre Extraction
2.3. Scanning Electron Microscopy (SEM)
2.4. Aspect Ratio of Extracted Kenaf Fibres
2.5. Fibre Defects
2.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.7. Raman Spectroscopy
2.8. Cellulose Crystallinity
2.9. Degree of Oxidation
2.10. Thermogravimetic Analysis (TGA)
3. Results and Discussion
3.1. Extracted Kenaf Fibres
3.2. Aspect Ratio of Extracted Fibres
3.3. Defect Density of Elementary Fibres
3.4. FTIR Spectra
3.5. Raman Spectra
3.6. Crystallinity of Cellulose
3.7. Degree of Oxidation
3.8. Thermogravimetric Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choudhury, M.R.; Debnath, K. Green composites: Introductory overview. In Green Composites. Materials Horizons: From Nature to Nanomaterials; Thomas, S., Balakrishnan, P., Eds.; Springer: Singapore, 2021; pp. 1–20. [Google Scholar]
- Sain, M.; Panthapulakkal, S. Green fibre thermoplastic composites. In Green Composites—Polymer Composites and the Environment; Baillie, C., Ed.; CRC Press: Cambridge, UK, 2004; pp. 181–206. [Google Scholar]
- Pickering, K.L.; Aruan Efendy, M.G.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A 2016, 83, 98–112. [Google Scholar] [CrossRef] [Green Version]
- Lofti, A.; Li, H.; Dao, D.V.; Prusty, G. Natural fiber-reinforced composites: A review on material, manufacturing, and machinability. J. Thermoplast. Compos. Mater. 2021, 34, 238–284. [Google Scholar]
- Aziz, S.H.; Ansell, M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004, 64, 1219–1230. [Google Scholar] [CrossRef]
- Edeerozey, A.M.M.; Akhil, H.M.; Azhar, A.B.; Ariffin, M.I.Z. Chemical modification of kenaf fibers. Mater. Lett. 2007, 61, 2023–2025. [Google Scholar] [CrossRef]
- Han, Y.; Han, S.; Cho, D.; Kim, H. Kenaf/polypropylene biocomposites: Effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos. Interfaces 2007, 14, 559–578. [Google Scholar] [CrossRef]
- Sgriccia, N.; Hawley, M.; Misra, M. Characterization of natural fiber surfaces and natural fiber composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1632–1637. [Google Scholar] [CrossRef]
- Hill, C.A.S.; Khalil, H.P.S.A.; Hale, M.D. A study of the potential of acetylation to improve the properties of plant fibres. Ind. Crops Prod. 1998, 8, 53–63. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Xue, Y.; Du, Y.; Elder, S.; Wang, K.; Zhang, J. Temperature and loading rate effects on tensile properties of kenaf bast fiber bundles and composites. Compos. Part B Eng. 2009, 40, 189–196. [Google Scholar] [CrossRef]
- Rinne, K.T.; Boettger, T.; Loader, N.J.; Robertson, I.; Switsur, V.R.; Waterhouse, J.S. On the purification of alpha-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem. Geol. 2005, 222, 75–82. [Google Scholar] [CrossRef]
- Hughes, M. Defects in natural fibres: Their origin, characteristics and implications for natural fibre-reinforced composites. J. Mater. Sci. 2012, 47, 599–609. [Google Scholar] [CrossRef]
- Stuart, T.; Liu, Q.; Hughes, M.; McCall, R.D.; Sharma, H.S.S.; Norton, A. Structural biocomposites from flax—Part I: Effect of bio-technical fibre modification on composite properties. Compos. Part A Appl. Sci. Manuf. 2006, 37, 393–404. [Google Scholar] [CrossRef]
- Shin, H.K.; Jeun, J.P.; Kim, H.B.; Kang, P.H. Isolation of cellulose fibers from kenaf using electron beam. Radiat. Phys. Chem. 2012, 81, 936–940. [Google Scholar] [CrossRef]
- Mazumder, B.B.; Ohtani, Y.; Cheng, Z.; Sameshima, K. Combination treatment of kenaf bast fiber for high viscosity pulp. J. Wood Sci. 2000, 46, 364–370. [Google Scholar] [CrossRef]
- Calamari, T.A.; Tao, J.W.; Akin, D.E. Some important physical characteristics of kenaf fiber bundles and of the ultimate kenaf fibers. In Kenaf Properties Processing and Products; Sellers, T., Reichert, N.A., Eds.; Mississippi State University: Starkville, MS, USA, 1999; pp. 187–191. [Google Scholar]
- Zakaria, M.N. Effect of Hot Water Fibre Treatment on the Properties of Kenaf/Polyester Composites. Ph.D. Thesis, University of New South Wales, Sydney, NSW, Australia, 2014. [Google Scholar]
- Ogbonnaya, C.I.; Roy-Macauley, H.; Nwalozie, M.C.; Annerose, D.J.M. Physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Ind. Crops Prod. 1997, 7, 9–18. [Google Scholar] [CrossRef]
- Gominho, J.; Fernandez, J.; Pereira, H. Cynara cardunculus L.—A new fibre crop for pulp and paper production. Ind. Crops Prod. 2001, 13, 1–10. [Google Scholar] [CrossRef]
- Carlsen, S. Effects of Freeze Drying on Paper. 1999. Available online: https://cool.culturalheritage.org/iada/ta99_115.pdf (accessed on 23 November 2021).
- Spence, K.; Habibi, Y.; Dufresne, A. Nanocellulose-based composites. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia, S., Kaith, B.S., Kaur, I., Eds.; Springer: London, UK, 2011; pp. 179–213. [Google Scholar]
- Sayeba, S.; Marzouga, I.; Hassena, M.; Saklia, F.; Rodeslib, S. Study of water sorption properties for esparto grass ultimate fibre (ALFA fibre). J. Text. Inst. 2010, 101, 19–27. [Google Scholar] [CrossRef]
- Segal, L.; Creely, L.; Martin, A.; Conrad, C. An empirical method of estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Wang, D.; Shang, S.; Song, Z.; Lee, M. Evaluation of microcrystalline cellulose prepared from kenaf fibers. J. Ind. Eng. Chem. 2010, 16, 152–156. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.; Himmel, M.; Parilla, P.; Johnson, D. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lasseuguette, E. Grafting onto microfibrils of native cellulose. Cellulose 2008, 15, 571–580. [Google Scholar] [CrossRef]
- Ashton, W.H.; Moser, C.E. Oxidized Cellulose Product and Method for Preparing the Same. 1968. Available online: https://patents.google.com/patent/US3364200A/en (accessed on 23 November 2021).
- Bondeson, D.; Kvien, I.; Oksman, K. Strategies for Preparation of Cellulose Whiskers from Microcrystallinine Cellulose as Reinforcement in Nanocomposites. In Cellulose Nanocomposites: Processing, Characterization, and Properties; Oksman, K., Sain, M., Eds.; American Chemical Society: Washington, DC, USA, 2006; pp. 10–25. [Google Scholar]
- Van den Oever, M.; Bos, H.; Van Kemenade, M. Influence of the physical structure of flax fibres on the mechanical properties of flax fibre reinforced polypropylene composites. Appl. Compos. Mater. 2000, 7, 387–402. [Google Scholar] [CrossRef]
- Bailar, J.C.; Moeller, T.; Kleinberg, J.; Guss, C.O.; Castellion, M.E.; Metz, C. Chemistry; Harcourt Brace Jovanovich: New York, NY, USA, 1989. [Google Scholar]
- Hanninen, T.; Michud, A.; Hughes, M. Kink bands in bast fibres and their effects on mechanical properties. Plast. Rubber Compos. 2011, 40, 307–310. [Google Scholar] [CrossRef]
- Thygesen, L.G. Quantification of dislocations in hemp fibers using acid hydrolysis and fiber segment length distributions. J. Mater. Sci. 2008, 43, 1311–1317. [Google Scholar] [CrossRef]
- Ozturk, I.; Irmak, S.; Hesenov, A.; Erbatur, O. Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water. Biomass Bioenergy 2010, 34, 1578–1585. [Google Scholar] [CrossRef]
- Moran, J.; Alvarez, V.; Cyras, V.; Vazquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008, 15, 149–159. [Google Scholar] [CrossRef]
- Dai, D.; Fan, M. Characteristic and Performance of Elementary Hemp Fibre. Mater. Sci. Appl. 2010, 1, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Kubo, S.; Kadla, J.F. Hydrogen bonding in lignin: A Fourier transform infrared model compound study. Biomacromolecules 2005, 6, 2815–2821. [Google Scholar] [CrossRef]
- Li, Y.; Pickering, K.L. Hemp fibre reinforced composites using chelator and enzyme treatments. Compos. Sci. Technol. 2008, 68, 3293–3298. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Luz, S.M.; Del Tio, J.; Rocha, G.J.M.; Goncalves, A.R.; Del’Arco, A.P., Jr. Cellulose and cellulignin from sugarcane bagasse reinforced polypropylene composites: Effect of acetylation on mechanical and thermal properties. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1362–1369. [Google Scholar] [CrossRef]
- Garside, P.; Wyeth, P. Identification of cellulosic fibres by FTIR spectroscopy: Thread and single fibre analysis by attenuated total reflectance. Stud. Conserv. 2003, 48, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Samal, R.K.; Ray, M.C. Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). J. Appl. Polym. Sci. 1997, 64, 2119–2125. [Google Scholar] [CrossRef]
- Gert, E.; Morales, A.S.; Zubets, O.; Kaputskii, F. The features of nitric acid ‘mercerization’ of cellulose. Cellulose 2000, 7, 57–66. [Google Scholar] [CrossRef]
- Tserki, V.; Zafeiropoulos, N.E.; Simon, F.; Panayiotou, C. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1110–1118. [Google Scholar] [CrossRef]
- Edge, M.; Allen, N.S.; Hayes, M.; Riley, P.N.K.; Horie, C.V.; Luc-Gardette, J. Mechanisms of deterioration in cellulose nitrate base archival cinematograph film. Eur. Polym. J. 1990, 26, 623–630. [Google Scholar] [CrossRef]
- Ooi, B.G.; Rambo, A.L.; Hurtado, M.A. Overcoming the Recalcitrance for the Conversion of Kenaf Pulp to Glucose via Microwave-Assisted Pre-Treatment Processes. Int. J. Mol. Sci. 2011, 12, 1451–1463. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U.P. Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 2006, 224, 1141–1153. [Google Scholar] [CrossRef]
- Atalla, R.; Agarwal, U. Recording Raman spectra from plant cell walls. J. Raman Spectrosc. 1986, 17, 229–231. [Google Scholar] [CrossRef]
- Abdel Moteleb, M.M.; El Akabawy, Y.K. Dielectric investigation of some oxyviscoses. Polymer 1999, 40, 895–903. [Google Scholar] [CrossRef]
- Pereira, A.L.S.; Nascimento., D.M.S.; Cordeiro, E.M.S.; Morais, J.P.S.; Sousa, M.D.S.M.; Rosa, M.D.F. Characterization of lignocellulosic materials extracted from the banana pseudostem. In XII International Macromolecular Colloquium and 7th International Symposium on Natural Polymers and Composites; Asociacao Brasileira de Polimeros: Gramado, Brazil, 2010; pp. 1077–1079. [Google Scholar]
- Keshk, S.M.A.S.; Haija, M.A. A new method for producing microcrystalline cellulose from Gluconacetobacter xylinus and kenaf. Carbohydr. Polym. 2011, 84, 1301–1305. [Google Scholar] [CrossRef]
- Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.S.S.; Kernaghan, K. Thermogravimetric analysis of flax fibres. Thermochim. Acta 1988, 132, 101–109. [Google Scholar] [CrossRef]
- Huang, M.R.; Li, X.G. Thermal degradation of cellulose and cellulose esters. J. Appl. Polym. Sci. 1998, 68, 293–304. [Google Scholar] [CrossRef]
- Zhao, X.; van der Heide, E.; Zhang, T.; Liu, D. Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp. BioResources 2010, 5, 1565–1580. [Google Scholar]
Description | Test Method | Analysis (wt%) |
---|---|---|
Holocellulose | TAPPI T 249-75 | 91.2 |
Cellulose | TAPPI T 203 os-74 | 60.9 |
Hemicelluloses | TAPPI T 203 cm-99 | 30.3 |
Pentosan | TAPPI T 223 cm-01 | 17.3 |
Alkali solubility | TAPPI T 212 om-02 | 16.8 |
Lignin content | TAPPI T 222 om-02 | 11.1 |
Moisture content | TAPPI T 264 om-88 | 10.0 |
Hot water soluble | TAPPI T 207 cm-99 | 1.19 |
Ethanol-toluene | TAPPI T 204 cm-97 | 0.73 |
Ash content | TAPPI T 211 om-02 | 0.65 |
Sample | Measured Fibre Length (µm) | Measured Fibre Diameter (µm) | Aspect Ratio | ||||
---|---|---|---|---|---|---|---|
Minimum Length | Maximum Length | Average Length | Minimum Diameter | Maximum Diameter | Average Diameter | ||
KFTN | 53.5 | 685.0 | 179.5 ± 95.6 | 3.7 | 24.0 | 11.7 ± 3.1 | 15.3 |
KFTHA | 872.1 | 3462.4 | 2312.3 ± 627.3 | 6.9 | 21.9 | 13.0 ± 3.0 | 178.5 |
Chemical Treatment | Fibre Dimensions | |
---|---|---|
This Work | Previous Studies | |
HNO3 |
| Mazumder et al. [16]
|
H2O2/CH3COOH |
| Mazumder et al. [16]
|
Sample | Temperature | Chopped KF | KFTN | KFTHA |
---|---|---|---|---|
1st Step | Tonset (°C) | 23 | 21 | 24 |
Tmax (°C) | - | - | - | |
Tendset (°C) | 60 | 87 | 58 | |
2nd Step | Tonset (°C) | 258 | 187 | 310 |
Tmax (°C) | 339 | 309 | 330 | |
Tendset (°C) | 353 | 347 | 343 | |
3rd Step | Tonset (°C) | 439 | 413 | 422 |
Tmax (°C) | 462 | 424 | 432 | |
Tendset (°C) | 481 | 441 | 440 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soatthiyanon, N.; Crosky, A. Characterisation of Elementary Kenaf Fibres Extracted Using HNO3 and H2O2/CH3COOH. Fibers 2022, 10, 63. https://doi.org/10.3390/fib10080063
Soatthiyanon N, Crosky A. Characterisation of Elementary Kenaf Fibres Extracted Using HNO3 and H2O2/CH3COOH. Fibers. 2022; 10(8):63. https://doi.org/10.3390/fib10080063
Chicago/Turabian StyleSoatthiyanon, Niphaphun, and Alan Crosky. 2022. "Characterisation of Elementary Kenaf Fibres Extracted Using HNO3 and H2O2/CH3COOH" Fibers 10, no. 8: 63. https://doi.org/10.3390/fib10080063
APA StyleSoatthiyanon, N., & Crosky, A. (2022). Characterisation of Elementary Kenaf Fibres Extracted Using HNO3 and H2O2/CH3COOH. Fibers, 10(8), 63. https://doi.org/10.3390/fib10080063