Invasive Alien Plant Species for Use in Paper and Packaging Materials
Abstract
:1. Introduction
2. Overview of the Various IAPS in Europe for Paper Production
2.1. Knotweed
2.2. Goldenrod
2.3. Black Locust
3. The Preparation and Process Production of IAPS Fibers for Papermaking Industry
- (a)
- The supply should be abundant and uninterrupted;
- (b)
- Fibers should meet certain size requirements;
- (c)
- Pulp yield should be high;
- (d)
- Fibers should not deteriorate and lose strength rapidly during storage;
- (e)
- The insulation of the fibers should be technically and economically feasible;
- (f)
- Collection, transport, and storage should be economical;
- (g)
- There should be few competing uses for the selected material.
Properties of IAPS Fibers and Paper Materials
4. Different Applications on Papers from IAPS
5. Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cepi Report. Available online: https://www.cepi.org/wp-content/uploads/2022/02/Cepi_Preliminary-_2021_Report.pdf (accessed on 10 June 2022).
- EU 2022: European Commission, Directorate-General for Environment; Sundseth, K. Invasive Alien Species: A European Union Response, Publications Office, 2017. Available online: https://data.europa.eu/doi/10.2779/374800 (accessed on 10 June 2022).
- Conway, T.M.; Almas, A.D.; Coore, D. Ecosystem services, ecological integrity, and native species planting: How to balance these ideas in urban forest management? Urban For. Urban Green. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Chemetova, C.; Ribeiro, H.; Fabião, A.; Gominho, J. Towards sustainable valorisation of Acacia melanoxylon biomass: Characterization of mature and juvenile plant tissues. Environ. Res. 2020, 191, 110090. [Google Scholar] [CrossRef]
- Fan, S.; Yu, D.; Liu, C. The invasive plant Alternanthera philoxeroides was suppressed more intensively than its native congener by a native generalist: Implications for the biotic resistance hypothesis. PLoS ONE 2013, 8, e83619. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sanz, M.; Erboz, E.; Fontes, C.; López-Rubio, A. Valorization of Arundo donax for the production of high performance lignocellulosic films. Carbohydr. Polym. 2018, 199, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Ziska, L.H.; Reeves, J.B., III; Blank, B. The impact of recent increases in atmospheric CO2 on biomass production and vegetative retention of Cheatgrass (Bromus tectorum): Implications for fire disturbance. Glob. Change Biol. 2005, 11, 1325–1332. [Google Scholar] [CrossRef]
- Ruan, T.; Zeng, R.; Yin, X.Y.; Zhang, S.X.; Yang, Z.H. Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis. BioResources 2016, 11, 2372–2380. [Google Scholar] [CrossRef] [Green Version]
- Pintor-Ibarra, L.F.; Rivera-Prado, J.J.; Ngangyo-Heya, M.; Rutiaga-Quiñones, J.G. Evaluation of the chemical components of Eichhornia crassipes as an alternative raw material for pulp and paper. BioResources 2018, 13, 2800–2813. [Google Scholar] [CrossRef]
- Hromádková, Z.; Hirsch, J.; Ebringerová, A. Chemical evaluation of Fallopia species leaves and antioxidant properties of their non-cellulosic polysaccharides. Chem. Pap. 2010, 64, 663–672. [Google Scholar] [CrossRef]
- Claeson, S.M.; LeRoy, C.J.; Barry, J.R.; Kuehn, K.A. Impacts of invasive riparian knotweed on litter decomposition, aquatic fungi, and macroinvertebrates. Biol. Invasions 2014, 16, 1531–1544. [Google Scholar] [CrossRef]
- Saulino, H.H.L.; Trivinho-Strixino, S. Native macrophyte leaves influence more specialisation of neotropical shredder chironomids than invasive macrophyte leaves. Hydrobiologia 2018, 813, 189–198. [Google Scholar] [CrossRef]
- Kordsachia, O.; Seemann, A.; Patt, R. Fast growing poplar and Miscanthus sinensis—Future raw materials for pulping in Central Europe. Biomass Bioenergy 1993, 5, 137–143. [Google Scholar] [CrossRef]
- Serrano, L.; Egües, I.; Alriols, M.G.; Llano-Ponte, R.; Labidi, J. Miscanthus sinensis fractionation by different reagents. Chem. Eng. J. 2010, 156, 49–55. [Google Scholar] [CrossRef]
- Barba, C.; de la Rosa, A.; Vidal, T.; Colom, J.F.; Farriol, X.; Montané, D. TCF bleached pulps from Miscanthus sinensis by the impregnation rapid steam pulping (IRSP) process. J. Wood Chem. Technol. 2002, 22, 249–266. [Google Scholar] [CrossRef]
- Iglesias, G.; Bao, M.; Lamas, J.; Vega, A. Soda pulping of Miscanthus sinensis. Effects of operational variables on pulp yield and lignin solubilization. Bioresour. Technol. 1996, 58, 17–23. [Google Scholar] [CrossRef]
- Silva, L.B.; Lourenço, P.; Teixeira, A.; Azevedo, E.B.; Alves, M.; Elias, R.B.; Silva, L. Biomass valorization in the management of woody plant invaders: The case of Pittosporum undulatum in the Azores. Biomass Bioenergy 2018, 109, 155–165. [Google Scholar] [CrossRef]
- Liu, Y.; Bekele, L.D.; Lu, X.; Zhang, W.; Yu, C.; Duns, G.J.; Joseph, G.D.; Jin, L.; Chen, J. The effect of lignocellulose filler on mechanical properties of filled-high density polyethylene composites loaded with biomass of an invasive plant solidago canadensis. J. Biobased Mater. Bioenergy 2017, 11, 34–39. [Google Scholar] [CrossRef]
- Ren, G.B.; Wang, J.J.; Wang, A.D.; Wang, J.B.; Zhu, Y.L.; Wu, P.Q.; Ma, Y.; Zhang, J. Monitoring the invasion of smooth cordgrass Spartina alterniflora within the modern Yellow River Delta using remote sensing. J. Coast. Res. 2019, 90, 135–145. [Google Scholar] [CrossRef]
- Picou, L.; Boldor, D. Thermophysical characterization of the seeds of invasive Chinese tallow tree: Importance for biofuel production. Environ. Sci. Technol. 2012, 46, 11435–11442. [Google Scholar] [CrossRef]
- Pesenti, H.; Torres, M.; Oliveira, P.; Gacitua, W.; Leoni, M. Exploring Ulex europaeus to produce nontoxic binderless fibreboard. BioResources 2017, 12, 2660–2672. [Google Scholar] [CrossRef] [Green Version]
- Kavčič, U.; Karlovits, I. Invasive plant-based paper as a substrate for electroconductive printing inks. Adv. Print. Media Technol. 2019, 46, 165–170. [Google Scholar]
- Karlovits, I.; Kavčič, U.; Lavrič, G.; Šinkovec, A.; Zorić, V. Digital printability of papers made from invasive plants and agro-industrial residues. Cellul. Chem. Technol. 2020, 54, 523–529. [Google Scholar] [CrossRef]
- Selič, P.; Mavrić, Z.; Možina, K. Comparison of print quality on papers from invasive alien plants species. DAAAM Int. Sci. Book 2020, 49–60. [Google Scholar] [CrossRef]
- Karlovits, I.; Kavčič, U. Flexo printability of agro and invasive papers. Cellulose 2022, 29, 4613–4627. [Google Scholar] [CrossRef]
- Kavčič, U.; Karlovits, I. The influence of process parameters of screen-printed invasive plant paper electrodes on cyclic voltammetry. Nord. Pulp Pap. Res. J. 2020, 35, 299–307. [Google Scholar] [CrossRef]
- Karlovits, I.; Lavrič, G.; Kavčič, U.; Zorić, V. Electrophotography toner adhesion on agro-industrial residue and invasive plant papers. J. Adhes. Sci. Technol. 2021, 35, 2636–2651. [Google Scholar] [CrossRef]
- Starešinič, M.; Boh Podgornik, B.; Javoršek, D.; Leskovšek, M.; Možina, K. Fibers obtained from invasive alien plant species as a base material for paper production. Forests 2021, 12, 527. [Google Scholar] [CrossRef]
- Kapun, T.; Zule, J.; Fabjan, E.; Hočevar, B.; Grilc, M.; Likozar, B. Engineered invasive plant cellulose fibers as resources for papermaking. Eur. J. Wood Wood Prod. 2022, 80, 501–514. [Google Scholar] [CrossRef]
- Sežun, M.; Karlovits, I.; Kavčič, U. Chemical and Enzymatic Deinking Efficiency of Agro And Industrial Waste Fiber-Based Paper Packaging. J. Sci. Food Agric. 2022, 1–8. [Google Scholar] [CrossRef]
- Todorova, D.; Yavorov, N.; Lasheva, V. Improvement of barrier properties for packaging applications. Sustain. Chem. Pharm. 2022, 27, 100685. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Ulgiati, S. Efficiency and sustainability indicators for papermaking from virgin pulp—An emergy-based case study. Resour. Conserv. Recycl. 2018, 131, 313–328. [Google Scholar] [CrossRef]
- Sitzia, T.; Cierjacks, A.; De Rigo, D.; Caudullo, G. Robinia pseudoacacia in Europe: Distribution, habitat, usage and threats. Eur. Atlas For. Tree Species 2016, 166–167. Available online: https://www.researchgate.net/publication/299471371_Robinia_pseudoacacia_in_Europe_distribution_habitat_usage_and_threats (accessed on 11 June 2022).
- Redei, K.; Nicolescu, V.N.; Vor, T.; Potzelsberger, E.; Bastien, J.C.; Brus, R.; Bencat, T.; Đodan, M.; Cvjetković, B.; Andrašev, S.; et al. Ecology and management of black locust (Robinia pseudoacacia L.), a non-native tree species integrated in European forests and landscapes. J. For. Res. 2020, 31, 1081–1101. [Google Scholar]
- Nicolescu, V.N.; Hernea, C.; Bakti, B.; Keserű, Z.; Antal, B.; Rédei, K. Black locust (Robinia pseudoacacia L.) as a multi-purpose tree species in Hungary and Romania: A review. J. For. Res. 2018, 29, 1449–1463. [Google Scholar] [CrossRef]
- Campoy, J.G.; Acosta, A.T.; Affre, L.; Barreiro, R.; Brundu, G.; Buisson, E.; Gonzales, L.; Lema, M.; Novoa, A.; Fagúndez, J.; et al. Monographs of invasive plants in Europe: Carpobrotus. Bot. Lett. 2018, 165, 440–475. [Google Scholar] [CrossRef]
- Verbič, A.; Brenčič, K.; Primc, G.; Gorjanc, M. Importance of protocol design for suitable green in situ synthesis of ZnO on cotton using aqueous extract of japanese knotweed leaves as reducing agent. Forests 2022, 13, 143. [Google Scholar] [CrossRef]
- Naumoska, K.; Jug, U.; Kõrge, K.; Oberlintner, A.; Golob, M.; Novak, U.; Vovk, I.; Likozar, B. Antioxidant and Antimicrobial Biofoil Based on Chitosan and Japanese Knotweed (Fallopia japonica, Houtt.) Rhizome Bark Extract. Antioxidants 2022, 11, 1200. [Google Scholar] [CrossRef]
- Klančnik, M. Screen printing with natural dye extract from Japanese knotweed rhizome. Fibers Polym. 2021, 22, 2498–2506. [Google Scholar] [CrossRef]
- Bielecka, A.; Królak, E. Selected features of canadian goldenrod that predispose the plant to phytoremediation. J. Ecol. Eng. 2019, 20, 88–93. [Google Scholar] [CrossRef]
- Gala-Czekaj, D.; Dziurka, M.; Bocianowski, J.; Synowiec, A. Autoallelopathic potential of aqueous extracts from Canadian goldenrod (Solidago canadensis L.) and giant goldenrod (S. gigantea Aiton). Acta Physiol. Plant. 2022, 44, 1–12. [Google Scholar] [CrossRef]
- Radušienė, J.; Karpavičienė, B.; Marksa, M.; Ivanauskas, L.; Raudonė, L. Distribution Patterns of Essential Oil Terpenes in Native and Invasive Solidago Species and Their Comparative Assessment. Plants 2022, 11, 1159. [Google Scholar] [CrossRef]
- Patel, N.; Zihare, L.; Blumberga, D. Evaluation of bioresources validation. Agron. Res. 2021, 19, 1099–1111. [Google Scholar]
- Baranová, B.; Troščáková-Kerpčárová, E.; Gruľová, D. Survey of the Solidago canadensis L. Morphological Traits and Essential Oil Production: Aboveground Biomass Growth and Abundance of the Invasive Goldenrod Appears to Be Reciprocally Enhanced within the Invaded Stands. Plants 2022, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Spyroglou, G.; Fotelli, M.; Nanos, N.; Radoglou, K. Assessing Black Locust Biomass Accumulation in Restoration Plantations. Forests 2021, 12, 1477. [Google Scholar] [CrossRef]
- Środek, D.; Rahmonov, O. The properties of Black Locust Robinia pseudoacacia L. to selectively accumulate chemical elements from soils of ecologically transformed areas. Forests 2021, 13, 7. [Google Scholar] [CrossRef]
- Chauvel, B.; Fried, G.; Follak, S.; Chapman, D.; Kulakova, Y.; Le Bourgeois, T.; Marisavlijevic, D.; Monty, A.; Rossi, J.-P.; Regnier, E.; et al. Monographs on invasive plants in Europe N° 5: Ambrosia trifida L. Botany Lett. 2021, 168, 167–190. [Google Scholar] [CrossRef]
- Bahor, B.; Klopčič, M. Black locust (Robinia pseudoacacia L.) in Bela krajina: Distribution, growth, regeneration and management. Acta Silvae Ligni 2019, 13–28. Available online: https://www.cabdirect.org/cabdirect/abstract/20203150202 (accessed on 6 July 2022).
- Kuneš, I.; Baláš, M.; Gallo, J.; Šulitka, M.; Suraweera, C. Black locust (Robinia pseudoacacia) and its role in central Europe and Czech Republic. Zprávy Lesn. Výzkumu 2019, 64, 181–190. [Google Scholar]
- Alilla, R.; De Natale, F.; Epifani, C.; Parisse, B.; Cola, G. The Flowering of Black Locust (Robinia pseudoacacia L.) in Italy: A Phenology Modeling Approach. Agronomy 2022, 12, 1623. [Google Scholar] [CrossRef]
- Lange, C.A.; Knoche, D.; Hanschke, R.; Löffler, S.; Schneck, V. Physiological Performance and Biomass Growth of Different Black Locust Origins Growing on a Post-Mining Reclamation Site in Eastern Germany. Forests 2022, 13, 315. [Google Scholar] [CrossRef]
- Vítková, M.; Conedera, M.; Sádlo, J.; Pergl, J.; Pyšek, P. Dangerous and useful at the same time: Management strategies for the invasive black locust. Schweiz. Z. Forstwes. 2018, 169, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Żelazna, A.; Kraszkiewicz, A.; Przywara, A.; Łagód, G.; Suchorab, Z.; Werle, S.; Ballester, J.; Nosek, R. Life cycle assessment of production of black locust logs and straw pellets for energy purposes. Environ. Prog. Sustain. Energy 2019, 38, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Pandita, S.; Kaula, B.; Passey, S. Use of weeds and agro-based raw materials and their blends for handmade paper making. J. Undergr. Res. Innov. 2015, 1, 169–179. [Google Scholar]
- Kim, H.G.; Lee, U.S.; Kwac, L.K.; Lee, S.O.; Kim, Y.S.; Shin, H.K. Electron beam irradiation isolates cellulose nanofiber from Korea “tall goldenrod” invasive alien plant pulp. Nanomaterials 2019, 9, 1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evdokimova, O.L.; Alves, C.S.; Krsmanović Whiffen, R.M.; Ortega, Z.; Tomás, H.; Rodrigues, J. Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: A renewable green source of highly crystalline nanocellulose. J. Zhejiang Univ. Sci. B 2021, 22, 450–461. [Google Scholar] [CrossRef]
- Almeida, R.O.; Ramos, A.; Alves, L.; Potsi, E.; Ferreira, P.J.T.; Carvalho, M.G.V.S.; Rasteiro, M.G.; Gamelas, J.A.F. Production of nanocellulose gels and films from invasive tree species. Int. J. Biol. Macromol. 2021, 188, 1003–1011. [Google Scholar] [CrossRef]
- Baptista, P.; Costa, A.P.; Simões, R.; Amaral, M.E. Ailanthus altissima: An alternative fiber source for papermaking. Ind. Crops Prod. 2014, 52, 32–37. [Google Scholar] [CrossRef]
- Ferreira, P.J.; Gamelas, J.A.; Carvalho, M.G.; Duarte, G.V.; Canhoto, J.M.; Passas, R. Evaluation of the papermaking potential of Ailanthus altissima. Ind. Crops Prod. 2013, 42, 538–542. [Google Scholar] [CrossRef]
- Garcez, R.O.L.; Hofmann Gatti, T.; Carlos Gonzalez, J.; Cesar Franco, A.; Silva Ferreira, C. Characterization of Fibers from Culms and Leaves of Arundo donax L. (Poaceae) for Handmade Paper Production. J. Nat. Fibers 2022, 1–9. [Google Scholar] [CrossRef]
- Jiménez-Ruiz, J.; Hardion, L.; Del Monte, J.P.; Vila, B.; Santín-Montanyá, M.I. Monographs on invasive plants in Europe N° 4: Arundo donax L. Bot. Lett. 2021, 168, 131–151. [Google Scholar] [CrossRef]
- Skočaj, M. Bacterial nanocellulose in papermaking. Cellulose 2019, 26, 6477–6488. [Google Scholar] [CrossRef]
- Hassani FZ, S.A.; Salim, M.H.; Kassab, Z.; Sehaqui, H.; Ablouh, E.H.; Bouhfid, R.; El Achaby, M. Crosslinked starch-coated cellulosic papers as alternative food-packaging materials. RSC Adv. 2022, 12, 8536–8546. [Google Scholar] [CrossRef] [PubMed]
- Placet, V.; Passard, J.; Perré, P. Viscoelastic properties of wood across the grain measured under water-saturated conditions up to 135 C: Evidence of thermal degradation. J. Mater. Sci. 2008, 43, 3210–3217. [Google Scholar] [CrossRef] [Green Version]
- Kim, S. Inkjet-printed electronics on paper for RF identification (RFID) and sensing. Electronics 2020, 9, 1636. [Google Scholar] [CrossRef]
- Wiklund, J.; Karakoç, A.; Palko, T.; Yiğitler, H.; Ruttik, K.; Jäntti, R.; Paltakari, J. A review on printed electronics: Fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 2021, 5, 89. [Google Scholar] [CrossRef]
- Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A.C. A new frontier of printed electronics: Flexible hybrid electronics. Adv. Mater. 2020, 32, 1905279. [Google Scholar] [CrossRef]
- Lavrič, G.; Zamljen, A.; Juhant Grkman, J.; Jasiukaitytė-Grojzdek, E.; Grilc, M.; Likozar, B.; Gregor-Svetec, D.; Vrabič-Brodnjak, U. Organosolv Lignin Barrier Paper Coatings from Waste Biomass Resources. Polymers 2021, 13, 4443. [Google Scholar] [CrossRef]
- Klančnik, M. Printing with Natural Dye Extracted from Impatiens glandulifera Royle. Coatings 2021, 11, 445. [Google Scholar] [CrossRef]
- Weidlich, E.W.; Flórido, F.G.; Sorrini, T.B.; Brancalion, P.H. Controlling invasive plant species in ecological restoration: A global review. J. Appl. Ecol. 2020, 57, 1806–1817. [Google Scholar] [CrossRef]
- Van Meerbeek, K.; Appels, L.; Dewil, R.; Calmeyn, A.; Lemmens, P.; Muys, B.; Hermy, M. Biomass of invasive plant species as a potential feedstock for bioenergy production. Biofuels Bioprod. Biorefining 2015, 9, 273–282. [Google Scholar] [CrossRef]
- Rousu, P.; Rousu, P.; Anttila, J. Sustainable pulp production from agricultural waste. Resour. Conserv. Recycl. 2002, 35, 85–103. [Google Scholar] [CrossRef]
- Hladyz, S.; Gessner, M.O.; Giller, P.S.; Pozo, J.; Woodward, G.U.Y. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshw. Biol. 2009, 54, 957–970. [Google Scholar] [CrossRef]
- Lavoie, C. The impact of invasive knotweed species (Reynoutria spp.) on the environment: Review and research perspectives. Biol. Invasions 2017, 19, 2319–2337. [Google Scholar] [CrossRef]
- Dechoum MD, S.; Giehl EL, H.; Sühs, R.B.; Silveira TC, L.; Ziller, S.R. Citizen engagement in the management of non-native invasive pines: Does it make a difference? Biol. Invasions 2019, 21, 175–188. [Google Scholar] [CrossRef]
- Danesh, M.; Moud, A.A.; Mauran, D.; Hojabr, S.; Berry, R.; Pawlik, M.; Hatzikiriakos, S.G. The yielding of attractive gels of nanocrystal cellulose (CNC). J. Rheol. 2021, 65, 855–869. [Google Scholar] [CrossRef]
- Gahrooee, T.R.; Moud, A.A.; Danesh, M.; Hatzikiriakos, S.G. Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohydr. Polym. 2021, 257, 117552. [Google Scholar] [CrossRef]
- Islam, M.S.; Chen, L.; Sisler, J.; Tam, K.C. Cellulose nanocrystal (CNC)–inorganic hybrid systems: Synthesis, properties and applications. J. Mater. Chem. B 2018, 6, 864–883. [Google Scholar] [CrossRef]
Type of Fibers | IAPS Source | Production Process | Properties of Final Product | Reference |
---|---|---|---|---|
Cellulose nanofibers | Goldenrod | Alkali cooking and bleaching; electron beam irradiation for pulp preparation. | Higher char yield, increased tensile properties | [55] |
Cellulose nanofibers | Agave americana L. and Ricinus communis L. | Alkaline and acid hydrolysis for nanofiber preparation. | High crystallinity index; highly crystalline cellulose-based cytocompatible nanomaterials for biomedical applications | [56] |
Nanocellulose | Acacia dealbata and Ailanthus altissima | Kraft pulp of invasive plant pre-treated with NaClO, NaBr, and TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) | Improved tensile properties, similar to eucalyptus; modest water vapor permeability. | [57] |
Fibers | Knotweed, Goldenrod, Black Locust | Delignification and disintegration of biomass for pulp preparation. | High porosity of produced paper sheets, (darker) changes in optical parameters, changes of mechanical and chemical properties are influenced regarding the pulp preparation. | [29] |
Fibers | Ailanthus altissima | Kraft cooking and bleaching for pulp preparation. | All properties were closed to eucalyptus source paper. The young wood exhibited a pulping behavior close to eucalypts and lower tensile strength. The mature wood showed a lower pulp yield. | [58,59] |
Fibers | Arundo donax L. (Poaceae) | Maceration in glacial acid and hydrogen peroxide of culm for fiber analysis. | High length-to-width ratio, which potentially favors the tensile strength and reduces pulp beating costs. The high wall fraction and the presence of narrow lumens can result in a paper of lower quality with greater resistance to bending. | [60,61] |
Properties | Knotweeds | Goldenrods | Black Locust | Reference |
Fiber length [mm] | 0.775 | 0.452 | 0.963 | [25] |
Fiber width [µm] | 18.66 | 13.85 | 13.77 | |
Fiber orientation in paper sheets [°] | −30 to +30 | −10 to +10 | −30 to +30 | |
Chemical analysis of IAPS | ||||
Ethanol Extractives [%] | 1.10 | 1.60 | 4.70 | [28] |
Cellulose [%] | 35.0 | 37.0 | 41.0 | |
Hemicellulose [%] | 36.6 | 36.0 | 35.0 | |
Lignin [%] | 27.0 | 19.0 | 22.0 |
Properties | Knotweeds | Goldenrods | Black Locust | Reference |
---|---|---|---|---|
Grammage [g/m2] | 97–110 | 92–105 | 120 | [25,28] |
Thickness [mm] | 0.123–0.154 | 0.166–0.178 | 0.208–0.250 | |
Density [kg/m3] | 630–640 | 556–582 | 571–593 | |
Specific volume [cm3/g] | 1.588–1.620 | 1.799–1.834 | 1.753–1.847 | |
Ash content [%] | 1.90–2.42 | 3.68–4.05 | 2.82–3.11 |
Properties | Paper Direction | Knotweeds | Goldenrods | Black Locust | Reference |
---|---|---|---|---|---|
Tensile strength [MPa] | MD | 35.49 | 21.25 | 21.75 | [28] |
CD | 15.22 | 9.32 | 10.84 | ||
Elongation [%] | MD | 2.18 | 1.22 | 1.22 | |
CD | 4.32 | 2.64 | 3.56 | ||
Bending stiffness [km/s] | MD | 2.03 | 1.92 | 3.97 | |
CD | 0.86 | 0.71 | 1.54 | ||
Moisture content [%] | 5.70 | 5.50 | 5.60 | [25,28] | |
Roughness Bendsen [mL/min] | 5.84 | 6.57 | 6.10 | [25,27] | |
Surface free energy [mJ/m2] | 62 | 78 | 100 | ||
Relaxation temperature Tr [°] | 22.69 | 32.08 | 24.41 | [28] | |
Storage modulus E’ [GPa] | 1.970 | 2.521 | 1.425 |
Applications | The Source of IAPS | Substrate/Solution (Extract, Dye) from IAPS | Reference |
---|---|---|---|
Digital, electrographic printability | Canadian goldenrod, Black Locust | Paper | [27] |
Flexographic printability | Fallopia japonica, Canadian goldenrod, Black Locust | Paper | [25] |
Screen printed electrodes | Fallopia japonica, Canadian goldenrod | Paper | [22,27,29] |
Lignin from Knotweed for paper coating | Japanese Knotweed (Reynoutria japonica) | Coating solution | [68] |
Extracts and dyes from IAPS for screen printing | Fallopia japonica, Impatiens glandulifera Royle | Extract, Dye | [39,69] |
Advantage | Disadvantage |
---|---|
Potential for highlighting local awareness and business | Time consuming when collecting IAPS |
Paper sheets can be used for advertising, eco packaging, art papers etc. | More time and energy required for paper production |
Environmental solution regarding removal of the IAPS | Expensive to produce paper sheets |
Lower human toxycity | Lack of whiteness of the paper |
Sustainable design | |
Higher biodegaradibility |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrabič-Brodnjak, U.; Možina, K. Invasive Alien Plant Species for Use in Paper and Packaging Materials. Fibers 2022, 10, 94. https://doi.org/10.3390/fib10110094
Vrabič-Brodnjak U, Možina K. Invasive Alien Plant Species for Use in Paper and Packaging Materials. Fibers. 2022; 10(11):94. https://doi.org/10.3390/fib10110094
Chicago/Turabian StyleVrabič-Brodnjak, Urška, and Klemen Možina. 2022. "Invasive Alien Plant Species for Use in Paper and Packaging Materials" Fibers 10, no. 11: 94. https://doi.org/10.3390/fib10110094
APA StyleVrabič-Brodnjak, U., & Možina, K. (2022). Invasive Alien Plant Species for Use in Paper and Packaging Materials. Fibers, 10(11), 94. https://doi.org/10.3390/fib10110094