Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers
Abstract
:1. Introduction
2. Noise Characterization in Mode-Locked Fiber Lasers
2.1. Intensity Noise of Mode-Locked Fiber Lasers
2.2. Timing Jitter Characterization of Mode-Locked Fiber Lasers
2.3. Noises of Optical Frequency Comb in Mode-Locked Fiber Lasers
3. Mode-Locking Regimes and Their Effect on Noise Properties
3.1. Soliton Generation Mode
3.2. Stretched Pulses Generation Mode
3.3. Similariton Pulses Generation Mode
3.4. Dissipative Soliton Generation Mode
3.5. Selection of the Optimal Mode-Locking Regime
4. Classification and Comparative Analysis of Structural and Functional Fiber USP Laser Schemes
- Modulation depth is the maximum change in nonlinear absorption (or reflection) caused by radiation incident on the absorber;
- Saturation energy is the energy required to clear the absorber by a factor of (≈37%);
- The recovery (relaxation) time is the time during which the absorption is restored e times (2.718 times) after the passage of the pulse;
- Non-saturable losses are unwanted losses that do not participate in the nonlinear absorption process;
- Service life is the time during which the saturable absorber provides the required modulation depth and other properties;
- Moreover, note such characteristics as the optical damage threshold and GVD.
4.1. Natural Saturable Absorbers
4.2. Semiconductor Anti-Reflective Absorber with a Bragg Mirror (SESAM)
4.3. Carbon Nanostructure as a Saturable Absorber
4.4. Artificial Saturable Absorbers
4.4.1. Nonlinear Evolution of Polarization
4.4.2. Nonlinear Loop Mirrors
5. Hybrid Mode-Locking
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef] [Green Version]
- Coddington, I.; Newbury, N.; Swann, W. Dual-comb spectroscopy. Optica 2016, 3, 414–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Song, Y. Ultralow-noise mode-locked fiber lasers and frequency combs: Principles, status, and applications. Adv. Opt. Photonics 2016, 8, 465–540. [Google Scholar] [CrossRef]
- Gong, Q.; Zhao, W. Ultrafast Science to Capture Ultrafast Motions. Ultrafast Sci. 2021, 2021, 9765859. [Google Scholar] [CrossRef]
- McCumber, D.E. Intensity Fluctuations in the Output of cw Laser Oscillators. I. Phys. Rev. 1966, 141, 306–322. [Google Scholar] [CrossRef]
- Haus, H.; Mecozzi, A. Noise of mode-locked lasers. IEEE J. Quantum Electron. 1993, 29, 983–996. [Google Scholar] [CrossRef]
- Paschotta, R. Noise of mode-locked lasers (Part I): Numerical model. Appl. Phys. A 2004, 79, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Washburn, B.R.; Diddams, S.; Newbury, N.; Nicholson, J.W.; Yan, M.F.; Jørgensen, C.G. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Opt. Lett. 2004, 29, 250–252. [Google Scholar] [CrossRef]
- Gubin, M.; Kireev, A.N.; Tausenev, A.; Konyashchenko, A.V.; Kryukov, P.G.; Tyurikov, D.A.; Shelkovikov, A.S. Femtosecond Er3+ fiber laser for application in an optical clock. Laser Phys. 2007, 17, 1286–1291. [Google Scholar] [CrossRef]
- Zaytsev, K.I.; Gavdush, A.A.; Karasik, V.E.; Alekhnovich, V.I.; Nosov, P.A.; Lazarev, V.A.; Reshetov, I.V.; Yurchenko, S.O. Accuracy of sample material parameters reconstruction using terahertz pulsed spectroscopy. J. Appl. Phys. 2014, 115, 193105. [Google Scholar] [CrossRef]
- Eckstein, J.N.; Ferguson, A.I.; Hänsch, T.W. High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses. Phys. Rev. Lett. 1978, 40, 847–850. [Google Scholar] [CrossRef]
- Baklanov, Y.V.; Chebotayev, V.P. Narrow resonances of two-photon absorption of super-narrow pulses in a gas. Appl. Phys. A 1977, 12, 97–99. [Google Scholar] [CrossRef]
- Eckstein, J.N. High Resolution Spectroscopy Using Multiple Coherent Interactions; Stanford University: Stanford, CA, USA, 1978. [Google Scholar]
- Picqué, N.; Hänsch, T.W. Frequency comb spectroscopy. Nat. Photonics 2019, 13, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Gerry, C.; Knight, P. Introductory Quantum Optics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Washburn, B.R.; Swann, W.C.; Newbury, N. Response dynamics of the frequency comb output from a femtosecond fiber laser. Opt. Express 2005, 13, 10622–10633. [Google Scholar] [CrossRef]
- Paschotta, R.; Telle, H.; Keller, U. Noise of Solid-State Lasers. In Optical Science and Engineering; CRC Press: Boca Raton, FL, USA, 2006; pp. 473–510. [Google Scholar] [CrossRef]
- Ozeki, Y. Molecular vibrational imaging by stimulated Raman scattering microscopy: Principles and applications [Invited]. Chin. Opt. Lett. 2020, 18, 121702. [Google Scholar] [CrossRef]
- Cheng, J.-X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350, aaa8870. [Google Scholar] [CrossRef]
- Valley, G.C. Photonic analog-to-digital converters. Opt. Express 2007, 15, 1955–1982. [Google Scholar] [CrossRef]
- Taylor, H. An optical analog-to-digital converter—Design and analysis. IEEE J. Quantum Electron. 1979, 15, 210–216. [Google Scholar] [CrossRef]
- Steinke, M.; Tunnermann, H.; Kuhn, V.; Theeg, T.; Karow, M.; de Varona, O.; Jahn, P.; Booker, P.; Neumann, J.; Wesels, P.; et al. Single-Frequency Fiber Amplifiers for Next-Generation Gravitational Wave Detectors. IEEE J. Sel. Top. Quantum Electron. 2017, 24, 3100613. [Google Scholar] [CrossRef]
- Mayer, A.S.; Grosinger, W.; Fellinger, J.; Winkler, G.; Perner, L.W.; Droste, S.; Salman, S.H.; Li, C.; Heyl, C.M.; Hartl, I.; et al. Flexible all-PM NALM Yb:fiber laser design for frequency comb applications: Operation regimes and their noise properties. Opt. Express 2020, 28, 18946. [Google Scholar] [CrossRef]
- Liu, G.; Jiang, X.; Wang, A.; Chang, G.; Kaertner, F.; Zhang, Z. Robust 700 MHz mode-locked Yb:fiber laser with a biased nonlinear amplifying loop mirror. Opt. Express 2018, 26, 26003–26008. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Song, Y.; Jung, K.; Hu, M.; Wang, C.; Kim, J. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser. Opt. Express 2016, 24, 1347–1357. [Google Scholar] [CrossRef] [Green Version]
- Gierschke, P.; Jauregui, C.; Gottschall, T.; Limpert, J. Relative amplitude noise transfer function of an Yb3+-doped fiber amplifier chain. Opt. Express 2019, 27, 17041–17050. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, W.; Zhou, Y.; Qiao, T.; Lin, W.; Guo, Y.; Xu, S.; Yang, Z. High-repetition-rate ultrafast fiber lasers. Opt. Express 2018, 26, 16411–16421. [Google Scholar] [CrossRef]
- Qin, P.; Song, Y.; Kim, H.; Shin, J.; Kwon, D.; Hu, M.; Wang, C.; Kim, J. Reduction of timing jitter and intensity noise in normal-dispersion passively mode-locked fiber lasers by narrow band-pass filtering. Opt. Express 2014, 22, 28276–28283. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tian, H.; Hou, D.; Meng, F.; Ma, Y.; Xu, H.; Kärtner, F.X.; Song, Y.; Zhang, Z. Timing jitter reduction through relative intensity noise suppression in high-repetition-rate mode-locked fiber lasers. Opt. Express 2019, 27, 11273–11280. [Google Scholar] [CrossRef]
- Ma, Y.; Salman, H.S.; Li, C.; Mahnke, C.; Hua, Y.; Droste, S.; Fellinger, J.; Mayer, A.S.; Heckl, O.; Heyl, C.; et al. Compact, all-PM fiber integrated and alignment-free ultrafast Yb:fiber NALM laser with sub-femtosecond timing jitter. J. Lightwave Technol. 2021, 39, 4431–4438. [Google Scholar] [CrossRef]
- Li, Y.; Kuse, N.; Rolland, A.; Stepanenko, Y.; Radzewicz, C.; Fermann, M.E. Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb. Opt. Express 2017, 25, 18017–18023. [Google Scholar] [CrossRef]
- Vicentini, E.; Wang, Y.; Gatti, D.; Gambetta, A.; Laporta, P.; Galzerano, G.; Curtis, K.; McEwan, K.; Howle, C.R.; Coluccelli, N. Nonlinear pulse compression to 22 fs at 15.6 µJ by an all-solid-state multipass approach. Opt. Express 2020, 28, 4541–4549. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Pan, W.; Fu, X.; Zhang, L.; Feng, Y. Environmentally-stable 50-fs pulse generation directly from an Er:fiber oscillator. Opt. Fiber Technol. 2019, 52, 101963. [Google Scholar] [CrossRef]
- Audier, X.; Heuke, S.; Volz, P.; Rimke, I.; Rigneault, H. Noise in stimulated Raman scattering measurement: From basics to practice. APL Photonics 2020, 5, 011101. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.; Katoh, K.; Ozeki, Y. Reduction of excess intensity noise of picosecond Yb soliton fiber lasers in a >10-mW power regime. Opt. Express 2021, 29, 11702–11711. [Google Scholar] [CrossRef]
- Cranch, G.A.; Kirkendall, C.K. Emission properties of a passively mode-locked fiber laser for time division multiplexing of fiber Bragg grating array applications. In Proceedings of the 17th International Conference on Optical Fibre Sensors, Bruges, Belgium, 23–27 May 2005; pp. 980–983. [Google Scholar] [CrossRef]
- Newbury, N.R.; Swann, W.C. Low-noise fiber-laser frequency combs. JOSA B 2007, 24, 1756–1770. [Google Scholar] [CrossRef] [Green Version]
- Budunoğlu, I.L.; Ülgüdür, C.; Oktem, B.; Ilday, F.Ö. Intensity noise of mode-locked fiber lasers. Opt. Lett. 2009, 34, 2516–2518. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-B.; Han, H.-N.; Zhang, Z.-Y.; Shao, X.-D.; Zhu, J.-F.; Wei, Z.-Y. An Yb-fiber frequency comb phase-locked to microwave standard and optical reference. Chin. Phys. B 2020, 29, 030601. [Google Scholar] [CrossRef]
- Nishizawa, N.; Suga, H.; Yamanaka, M. Investigation of dispersion-managed, polarization-maintaining Er-doped figure-nine ultrashort-pulse fiber laser. Opt. Express 2019, 27, 19218–19232. [Google Scholar] [CrossRef]
- Kim, C.; Kim, D.; Cheong, Y.; Kwon, D.; Choi, S.Y.; Jeong, H.; Cha, S.J.; Lee, J.-W.; Yeom, D.-I.; Rotermund, F.; et al. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber. Opt. Express 2015, 23, 26234–26242. [Google Scholar] [CrossRef] [Green Version]
- Nugent-Glandorf, L.; Johnson, T.A.; Kobayashi, Y.; Diddams, S.A. Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb. Opt. Lett. 2011, 36, 1578–1580. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Zhang, S.; Kwon, D.; Liao, R.; Cui, Y.; Zhang, Z.; Song, Y.; Kim, J. Intensity noise suppression in mode-locked fiber lasers by double optical bandpass filtering. Opt. Lett. 2017, 42, 4095–4098. [Google Scholar] [CrossRef] [PubMed]
- Oktem, B.; Ulgudur, C.; Ilday, F.Ö. Soliton-similariton fibre laser. Nat. Photonics 2010, 4, 307–311. [Google Scholar] [CrossRef]
- Jauregui, C.; Müller, M.; Kienel, M.; Emaury, F.; Saraceno, C.J.; Limpert, J.; Keller, U.; Tünnermann, A. Optimizing the noise characteristics of high-power fiber laser systems. In Fiber Lasers XIV: Technology and Systems; SPIE LASE: San Francisco, CA, USA, 2017; Volume 10083, pp. 164–167. [Google Scholar] [CrossRef]
- Ouyang, C.; Shum, P.; Wang, H.; Wong, J.H.; Wu, K.; Fu, S.; Li, R.; Kelleher, E.J.R.; Chernov, A.I.; Obraztsova, E.D. Observation of timing jitter reduction induced by spectral filtering in a fiber laser mode locked with a carbon nanotube-based saturable absorber. Opt. Lett. 2010, 35, 2320–2322. [Google Scholar] [CrossRef]
- Paschotta, R. Noise of mode-locked lasers (Part II): Timing jitter and other fluctuations. Appl. Phys. A 2004, 79, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Paschotta, R. Timing jitter and phase noise of mode-locked fiber lasers. Opt. Express 2010, 18, 5041–5054. [Google Scholar] [CrossRef]
- Gordon, J.P.; Haus, H.A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 1986, 11, 665–667. [Google Scholar] [CrossRef]
- Fermann, M.E.; Hartl, I. Ultrafast Fiber Laser Technology. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 191–206. [Google Scholar] [CrossRef]
- Shin, J.; Jung, K.; Song, Y.; Kim, J. Characterization and analysis of timing jitter in normal-dispersion mode-locked Er-fiber lasers with intra-cavity filtering. Opt. Express 2015, 23, 22898–22906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortier, T.; Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2019, 2, 153. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.-T. Phase and amplitude fluctuations in a mode-locked laser. IEEE J. Quantum Electron. 1985, 11, 1806–1813. [Google Scholar] [CrossRef]
- Telle, H.; Lipphardt, B.; Stenger, J. Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements. Appl. Phys. A 2002, 74, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Schawlow, A.L.; Townes, C.H. Infrared and Optical Masers. Phys. Rev. 1958, 112, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Song, Y.; Hu, M. Noise Measurement and Reduction in Mode-Locked Lasers: Fundamentals for Low-Noise Optical Frequency Combs. Appl. Sci. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Paschotta, R.; Schlatter, A.; Zeller, S.; Keller, U. Optical phase noise and carrier-envelope offset noise of mode-locked lasers. Appl. Phys. B 2006, 82, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Hänsch, T.W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 2006, 78, 1297–1309. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Hänsch, T.W.; Spielmann, C.; Poppe, A.; Brabec, T.; Krausz, F. Route to phase control of ultrashort light pulses. Opt. Lett. 1996, 21, 2008–2010. [Google Scholar] [CrossRef] [PubMed]
- Telle, H.; Steinmeyer, G.; Dunlop, A.; Stenger, J.; Sutter, D.; Keller, U. Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. A 1999, 69, 327–332. [Google Scholar] [CrossRef]
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis. Science 2000, 288, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Peters, W.K.; Jones, T.; Efimov, A.; Pedersoli, E.; Foglia, L.; Mincigrucci, R.; Nikolov, I.; Trebino, R.; Danailov, M.B.; Capotondi, F.; et al. All-optical single-shot complete electric field measurement of extreme ultraviolet free electron laser pulses. Optica 2021, 8, 545. [Google Scholar] [CrossRef]
- Kurucz, M.; Tóth, S.; Flender, R.; Haizer, L.; Kiss, B.; Persielle, B.; Cormier, E. Single-shot CEP drift measurement at arbitrary repetition rate based on dispersive Fourier transform. Opt. Express 2019, 27, 13387–13399. [Google Scholar] [CrossRef]
- Fukahori, S.; Ando, T.; Miura, S.; Kanya, R.; Yamanouchi, K.; Rathje, T.; Paulus, G.G. Determination of the absolute carrier-envelope phase by angle-resolved photoelectron spectra of Ar by intense circularly polarized few-cycle pulses. Phys. Rev. A 2017, 95, 053410. [Google Scholar] [CrossRef]
- Wittmann, T.; Horvath, B.; Helml, W.; Schatzel, M.G.; Gu, X.; Cavalieri, A.L.; Paulus, G.G.; Kienberger, R. Single-shot carrier–envelope phase measurement of few-cycle laser pulses. Nat. Phys. 2009, 5, 357–362. [Google Scholar] [CrossRef]
- Sayler, A.M.; Rathje, T.; Müller, W.; Rühle, K.; Kienberger, R.; Paulus, G.G. Precise, real-time, every-single-shot, carrier-envelope phase measurement of ultrashort laser pulses. Opt. Lett. 2010, 36, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Hoff, D.; Furch, F.J.; Witting, T.; Rühle, K.; Adolph, D.; Sayler, A.M.; Vrakking, M.; Paulus, G.G.; Schulz, C.P. Continuous every-single-shot carrier-envelope phase measurement and control at 100 kHz. Opt. Lett. 2018, 43, 3850–3853. [Google Scholar] [CrossRef] [PubMed]
- Adolph, D.; Möller, M.; Bierbach, J.; Schwab, M.; Sävert, A.; Yeung, M.; Sayler, A.M.; Zepf, M.; Kaluza, M.C.; Paulus, G.G. Real-time, single-shot, carrier-envelope-phase measurement of a multi-terawatt laser. Appl. Phys. Lett. 2017, 110, 081105. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.G.; Herrwerth, O.; Wirth, A.; De, S.; Ben-Itzhak, I.; Lezius, M.; Bergues, B.; Kling, M.F.; Senftleben, A.; Schröter, C.D.; et al. Single-shot carrier-envelope-phase-tagged ion-momentum imaging of nonsequential double ionization of argon in intense 4-fs laser fields. Phys. Rev. A 2011, 83, 013412. [Google Scholar] [CrossRef]
- Schöffler, M.S.; Xie, X.; Wustelt, P.; Möller, M.; Roither, S.; Kartashov, D.; Sayler, A.M.; Baltuska, A.; Paulus, G.G.; Kitzler, M. Laser-subcycle control of sequential double-ionization dynamics of helium. Phys. Rev. A 2016, 93, 063421. [Google Scholar] [CrossRef]
- Kangaparambil, S.; Hanus, V.; Dorner-Kirchner, M.; He, P.; Larimian, S.; Paulus, G.; Baltuška, A.; Xie, X.; Yamanouchi, K.; He, F.; et al. Generalized Phase Sensitivity of Directional Bond Breaking in the Laser-Molecule Interaction. Phys. Rev. Lett. 2020, 125, 023202. [Google Scholar] [CrossRef]
- Hanus, V.; Kangaparambil, S.; Larimian, S.; Dorner-Kirchner, M.; Xie, X.; Schöffler, M.S.; Paulus, G.G.; Baltuška, A.; Staudte, A.; Kitzler-Zeiler, M. Experimental Separation of Subcycle Ionization Bursts in Strong-Field Double Ionization of H2. Phys. Rev. Lett. 2020, 124, 103201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Ivanov, I.A.; Hwang, S.I.; Kim, K.; Nam, C.H.; Kim, K.T. Attosecond streaking using a rescattered electron in an intense laser field. Sci. Rep. 2020, 10, 22075. [Google Scholar] [CrossRef]
- Hansinger, P.; Töpfer, P.; Dimitrov, N.; Adolph, D.; Hoff, D.; Rathje, T.; Sayler, A.M.; Dreischuh, A.; Paulus, G.G. Refractive index dispersion measurement using carrier-envelope phasemeters. New J. Phys. 2017, 19, 023040. [Google Scholar] [CrossRef] [Green Version]
- Chelkowski, S.; Bandrauk, A.D. Asymmetries in strong-field photoionization by few-cycle laser pulses: Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons. Phys. Rev. A 2005, 71, 053815. [Google Scholar] [CrossRef]
- Möller, M.; Sayler, A.M.; Rathje, T.; Chini, M.; Chang, Z.; Paulus, G.G. Precise, real-time, single-shot carrier-envelope phase measurement in the multi-cycle regime. Appl. Phys. Lett. 2011, 99, 121108. [Google Scholar] [CrossRef]
- Kübel, M.; Betsch, K.J.; Johnson, N.G.; Kleineberg, U.; Moshammer, R.; Ullrich, J.; Paulus, G.G.; Kling, M.F.; Bergues, B. Carrier-envelope-phase tagging in measurements with long acquisition times. New J. Phys. 2012, 14, 093027. [Google Scholar] [CrossRef]
- Duling, I.N. All-fiber ring soliton laser mode locked with a nonlinear mirror. Opt. Lett. 1991, 16, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Ippen, E.P.; Haus, H.A. Pulse dynamics in stretched-pulse fiber lasers. Appl. Phys. Lett. 1995, 67, 158–160. [Google Scholar] [CrossRef]
- Ilday, F.; Buckley, J.R.; Clark, W.G.; Wise, F.W. Self-Similar Evolution of Parabolic Pulses in a Laser. Phys. Rev. Lett. 2004, 92, 213902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renninger, W.H.; Chong, A.; Wise, F.W. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 2008, 77, 023814. [Google Scholar] [CrossRef]
- Haus, H.A. Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 1975, 46, 3049–3058. [Google Scholar] [CrossRef] [Green Version]
- Wise, F.; Chong, A.; Renninger, W. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2008, 2, 58–73. [Google Scholar] [CrossRef]
- Agrawal, G. Chapter 2—Pulse Propagation in Fibers. In Nonlinear Fiber Optics, 5th ed.; Agrawal, G., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 27–56. [Google Scholar] [CrossRef]
- Kutz, J.N.; Collings, B.C.; Bergman, K.; Tsuda, S.; Cundiff, S.; Knox, W.H.; Holmes, P.; Weinstein, M. Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector. J. Opt. Soc. Am. B 1997, 14, 2681–2690. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Nelson, L.E.; Haus, H.A.; Ippen, E.P. Soliton versus nonsoliton operation of fiber ring lasers. Appl. Phys. Lett. 1994, 64, 149–151. [Google Scholar] [CrossRef]
- Kadel, R.; Washburn, B.R. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser. Appl. Opt. 2015, 54, 746–750. [Google Scholar] [CrossRef]
- Zabusky, N.J.; Kruskal, M.D. Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Phys. Rev. Lett. 1965, 15, 240–243. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.F.; Shabat, A.B. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Wave in Nonlinear Media. Sov. Phys. JETP 1972, 34, 62. [Google Scholar]
- Mollenauer, L.F.; Stolen, R.H.; Gordon, J.P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers. Phys. Rev. Lett. 1980, 45, 1095–1098. [Google Scholar] [CrossRef]
- Agrawal, G.P. Chapter 5—Optical Solitons. In Nonlinear Fiber Optics, 5th ed.; Agrawal, G., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 129–191. [Google Scholar] [CrossRef]
- Emplit, P.; Hamaide, J.; Reynaud, F.; Froehly, C.; Barthelemy, A. Picosecond steps and dark pulses through nonlinear single mode fibers. Opt. Commun. 1987, 62, 374–379. [Google Scholar] [CrossRef]
- Kelly, S. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 1992, 28, 806–807. [Google Scholar] [CrossRef]
- Dennis, M.L.; Duling, I.N. Role of dispersion in limiting pulse width in fiber lasers. Appl. Phys. Lett. 1993, 62, 2911–2913. [Google Scholar] [CrossRef]
- Dennis, M.; Duling, I. Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quantum Electron. 1994, 30, 1469–1477. [Google Scholar] [CrossRef]
- Weiner, A.M. Mode-Locking: Selected Advanced Topics. In Ultrafast Optics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 316–361. [Google Scholar] [CrossRef]
- Weiner, A.M. Ultrafast Nonlinear Optics: Third Order. In Ultrafast Optics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 258–315. [Google Scholar] [CrossRef]
- Fermann, M.; Bennion, I.; Sugden, K. Generation of 10 nJ picosecond pulses from a modelocked fibre laser. Electron. Lett. 1995, 31, 194–195. [Google Scholar] [CrossRef]
- Malomed, B.A. Bound solitons in coupled nonlinear Schrödinger equations. Phys. Rev. A 1992, 45, R8321–R8323. [Google Scholar] [CrossRef] [PubMed]
- Orekhov, I.O.; Kudelin, I.S.; Dvoretskiy, D.A.; Sazonkin, S.G.; Pnev, A.B.; Karasik, V.E.; Denisov, L.K. Propagation Features of Multibound Solitons in Optical Fiber with Anomalous Dispersion in the Telecom Range. In Proceedings of the Frontiers in Optics 2020, Washington, DC, USA, 14–17 September 2020. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Kudelin, I.S.; Orekhov, I.O.; Pnev, A.B.; Karasik, V.E.; Denisov, L.K. Multibound Soliton Formation in an Erbium-Doped Ring Laser with a Highly Nonlinear Resonator. IEEE Photonics Technol. Lett. 2019, 32, 43–46. [Google Scholar] [CrossRef]
- Nguyen, N.D.; Binh, L.N. Generation of high order multi-bound solitons and propagation in optical fibers. Opt. Commun. 2009, 282, 2394–2406. [Google Scholar] [CrossRef]
- Chernysheva, M.; Bednyakova, A.; Al Araimi, M.; Howe, R.C.T.; Hu, G.; Hasan, T.; Gambetta, A.; Galzerano, G.; Rümmeli, M.; Rozhin, A. Double-Wall Carbon Nanotube Hybrid Mode-Locker in Tm-doped Fibre Laser: A Novel Mechanism for Robust Bound-State Solitons Generation. Sci. Rep. 2017, 7, srep44314. [Google Scholar] [CrossRef] [Green Version]
- Haboucha, A.; Leblond, H.; Salhi, M.; Komarov, A.; Sanchez, F. Analysis of soliton pattern formation in passively mode-locked fiber lasers. Phys. Rev. A 2008, 78, 043806. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.Y.; Zhao, L.M.; Zhao, B.; Liu, A.Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 2005, 72, 043816. [Google Scholar] [CrossRef]
- Lederer, M.J.; Luther-Davies, B.; Tan, H.H.; Jagadish, C.; Akhmediev, N.N.; Soto-Crespo, J.M. Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror. J. Opt. Soc. Am. B 1999, 16, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Orekhov, I.O.; Kudelin, I.S.; Pnev, A.B.; Karasik, V.E.; Denisov, L.K. Controllable Generation of Ultrashort Multi-Bound Solitons in a Mode-Locked Erbium-Doped Ring Laser with a Highly-Nonlinear Resonator. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, Munich, Germany, 23–27 June 2019. [Google Scholar] [CrossRef]
- Binh, L.N. Optical Multi-Bound Solitons; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Tamura, K.; Ippen, E.P.; Haus, H.A.; Nelson, L.E. 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 1993, 18, 1080–1082. [Google Scholar] [CrossRef]
- Nelson, L.; Jones, D.; Tamura, K.; Haus, H.; Ippen, E. Ultrashort-pulse fiber ring lasers. Appl. Phys. A 1997, 65, 277–294. [Google Scholar] [CrossRef]
- Nelson, L.E.; Fleischer, S.B.; Lenz, G.; Ippen, E.P. Efficient frequency doubling of a femtosecond fiber laser. Opt. Lett. 1996, 21, 1759–1761. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.Y.; Zhao, L.M. Generation of 47-fs pulses directly from an erbium-doped fiber laser. Opt. Lett. 2006, 32, 41–43. [Google Scholar] [CrossRef]
- Anderson, D.; Desaix, M.; Karlsson, M.; Lisak, M.; Quiroga-Teixeiro, M.L. Wave-breaking-free pulses in nonlinear-optical fibers. J. Opt. Soc. Am. B 1993, 10, 1185–1190. [Google Scholar] [CrossRef]
- Fermann, M.E.; Kruglov, V.I.; Thomsen, B.C.; Dudley, J.; Harvey, J.D. Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers. Phys. Rev. Lett. 2000, 84, 6010–6013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, J.R.; Wise, F.W.; Ilday, F.Ö.; Sosnowski, T. Femtosecond fiber lasers with pulse energies above 10 nJ. Opt. Lett. 2005, 1888–1890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, A.; Kruhlak, R.; Harvey, J.; Dudley, J. Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion. Opt. Commun. 2002, 206, 171–177. [Google Scholar] [CrossRef]
- Ortac, B.; Hideur, A.; Chédot, C.; Brunel, M.; Martel, G.; Limpert, J. Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser. Appl. Phys. A 2006, 85, 63–67. [Google Scholar] [CrossRef]
- Ruehl, A.; Hundertmark, H.; Wandt, D.; Fallnich, C.; Kracht, D. 0.7 W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses. Opt. Express 2005, 13, 6305–6309. [Google Scholar] [CrossRef] [PubMed]
- Proctor, B.; Westwig, E.; Wise, F. Characterization of a Kerr-lens mode-locked Ti:sapphire laser with positive group-velocity dispersion. Opt. Lett. 1993, 18, 1654–1656. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Wu, J. Gain-guided soliton in a positive group-dispersion fiber laser. Opt. Lett. 2006, 31, 1788–1790. [Google Scholar] [CrossRef]
- Kieu, K.; Renninger, W.H.; Chong, A.; Wise, F.W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 2009, 34, 593–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocker, H.W.; Collins, R.J. Mode Competition and Self-Locking Effects in a Q-Switched Ruby Laser. Appl. Phys. Lett. 1965, 7, 270–273. [Google Scholar] [CrossRef]
- DeMaria, A.J.; Stetser, D.A.; Heynau, H. Self Mode-Locking of Lasers with Saturable Absorbers. Appl. Phys. Lett. 1966, 8, 174–176. [Google Scholar] [CrossRef]
- Kryukov, P.G. Ultrashort-pulse lasers. Quantum Electron. 2001, 31, 95–119. [Google Scholar] [CrossRef]
- Hofer, M.; Fermann, M.E.; Haberl, F.; Ober, M.H.; Schmidt, A.J. Mode locking with cross-phase and self-phase modulation. Opt. Lett. 1991, 16, 502–504. [Google Scholar] [CrossRef]
- Tamura, K.; Haus, H.; Ippen, E. Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett. 1992, 28, 2226–2228. [Google Scholar] [CrossRef]
- Fermann, M.E.; Haberl, F.; Hofer, M.; Hochreiter, H. Nonlinear amplifying loop mirror. Opt. Lett. 1990, 15, 752–754. [Google Scholar] [CrossRef]
- Richardson, D.; Laming, R.; Payne, D.; Phillips, M.; Matsas, V. 320 fs soliton generation with passively mode-locked erbium fibre laser. Electron. Lett. 1991, 27, 730–732. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.; Aidit, S.N.; Ooi, S.I.; Samion, M.Z.; Wang, S.; Wang, Y.; Sahu, J.K.; Zamzuri, A.K. 1.3 µm dissipative soliton resonance generation in Bismuth doped fiber laser. Sci. Rep. 2021, 11, 6356. [Google Scholar] [CrossRef]
- Doran, N.J.; Wood, D. Nonlinear-optical loop mirror. Opt. Lett. 1988, 13, 56–58. [Google Scholar] [CrossRef]
- Oh, W.-Y.; Kim, B.; Lee, H.-W. Passive mode locking of a neodymium-doped fiber laser with a nonlinear optical loop mirror. IEEE J. Quantum Electron. 1996, 32, 333–339. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Zhu, T.; Chen, J.; Chang, S. Graded index multimode fibre as saturable absorber induced by nonlinear multimodal interference for ultrafast photonics. J. Phys. Photonics 2020, 3, 012005. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.N.; Yang, F.; Li, L.; Zhao, C.-L.; Xu, B.; Jin, S.; Cao, S.-Y.; Fang, Z.-J. Stretched graded-index multimode optical fiber as a saturable absorber for erbium-doped fiber laser mode locking. Opt. Lett. 2018, 43, 2078–2081. [Google Scholar] [CrossRef] [PubMed]
- Keller, U.; Miller, D.A.B.; Boyd, G.D.; Chiu, T.H.; Ferguson, J.F.; Asom, M.T. Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: An antiresonant semiconductor Fabry–Perot saturable absorber. Opt. Lett. 1992, 17, 505–507. [Google Scholar] [CrossRef]
- Nakazawa, M.; Suzuki, K.; Kubota, H.; Kimura, Y. Self-Q-switching and mode locking in a 153-μm fiber ring laser with saturable absorption in erbium-doped fiber at 42 K. Opt. Lett. 1993, 18, 613–615. [Google Scholar] [CrossRef]
- Set, S.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes. J. Light. Technol. 2004, 22, 51–56. [Google Scholar] [CrossRef]
- Yamashita, S.; Inoue, Y.; Maruyama, S.; Murakami, Y.; Yaguchi, H.; Jablonski, M.; Set, S. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Opt. Lett. 2004, 29, 1581–1583. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Liu, R.-T.; Huang, C.; Huang, Y.-F.; Gao, L.-F.; Sun, B.; Huang, Z.-P.; Zhang, L.; Hu, C.-X.; Zhang, Z.-Q.; et al. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale 2018, 10, 21106–21115. [Google Scholar] [CrossRef]
- Tran, V.; Soklaski, R.; Liang, Y.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319. [Google Scholar] [CrossRef] [Green Version]
- Koski, K.J.; Wessells, C.D.; Reed, B.W.; Cha, J.J.; Kong, D.; Cui, Y. Chemical Intercalation of Zerovalent Metals into 2D Layered Bi2Se3 Nanoribbons. J. Am. Chem. Soc. 2012, 134, 13773–13779. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Z.; Zang, Y.; Gong, Y.; Zheng, X.; He, K.; Cheng, X.; Jiang, T. Thickness-dependent carrier and phonon dynamics of topological insulator Bi_2Te_3 thin films. Opt. Express 2017, 25, 14635. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R.; Zhang, C.; Wei, K.; Li, H.; Chen, H.; et al. Ultrafast fiber lasers mode-locked by two-dimensional materials: Review and prospect. Photonics Res. 2019, 8, 78–90. [Google Scholar] [CrossRef]
- Ahmad, H.; Azmy, N.F.; Reduan, S.A.; Yusoff, N.; Kadir, Z.A. Cu2Te-PVA as saturable absorber for generating Q-switched erbium-doped fiber laser. Opt. Quantum Electron. 2021, 53, 189. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Lei, J.; Ma, M.; Wang, C.; Ge, Y.; Wei, Z. Recent advances in mode-locked fiber lasers based on two-dimensional materials. Nanophotonics 2020, 9, 2315–2340. [Google Scholar] [CrossRef]
- Göbel, E.O. Ultrafast spectroscopy of semiconductors. Festkörperprobleme 2007, 30, 269–294. [Google Scholar] [CrossRef]
- Siegner, U.; Fluck, R.; Zhang, G.; Keller, U. Ultrafast high-intensity nonlinear absorption dynamics in low-temperature grown gallium arsenide. Appl. Phys. Lett. 1996, 69, 2566–2568. [Google Scholar] [CrossRef]
- Lederer, M.J.; Luther-Davies, B.; Tan, H.H.; Jagadish, C.; Haiml, M.; Siegner, U.; Keller, U. Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs. Appl. Phys. Lett. 1999, 74, 1993–1995. [Google Scholar] [CrossRef]
- Lauret, J.-S.; Voisin, C.; Cassabois, G.; Delalande, C.; Roussignol, P.; Jost, O.; Capes, L. Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes. Phys. Rev. Lett. 2003, 90, 057404. [Google Scholar] [CrossRef] [Green Version]
- Bale, B.G.; Okhitnikov, O.G.; Turitsyn, S.K. Modeling and Technologies of Ultrafast Fiber Lasers. In Fiber Lasers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 135–175. [Google Scholar] [CrossRef]
- Byun, H.; Pudo, D.; Chen, J.; Ippen, E.P.; Kärtner, F.X. High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter. Opt. Lett. 2008, 33, 2221–2223. [Google Scholar] [CrossRef]
- Chen, J.; Sickler, J.W.; Byun, H.; Ippen, E.P.; Jiang, S.; Kärtner, F.X. Fundamentally Mode-locked 3 GHz Femtosecond Erbium Fiber Laser. In Ultrafast Phenomena XVI; Corkum, P., Silvestri, S., Nelson, K.A., Riedle, E., Schoenlein, R.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 92, pp. 732–734. [Google Scholar] [CrossRef]
- Guina, M.; Xiang, N.; Okhotnikov, O. Stretched-pulse fiber lasers based on semiconductor saturable absorbers. Appl. Phys. A 2002, 74, s193–s200. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Raravikar, N.R.; Schadler, L.S.; Ajayan, P.M.; Zhao, Y.-P.; Lu, T.-M.; Wang, G.-C.; Zhang, X.-C. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Appl. Phys. Lett. 2002, 81, 975–977. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Liu, X. Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics 2020, 9, 2731–2761. [Google Scholar] [CrossRef]
- Set, S.; Yaguchi, H.; Tanaka, Y.; Jablonski, M.; Sakakibara, Y.; Rozhin, A.; Tokumoto, M.; Kataura, H.; Achiba, Y.; Kikuchi, K. Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In Proceedings of the Optical Fiber Communications Conference, Atlanta, GA, USA, 28 March 2003; Volume 3, p. PD44-P1-3. [Google Scholar] [CrossRef]
- Hong, S.; Myung, S. Nanotube Electronics: A flexible approach to mobility. Nat. Nanotechnol. 2007, 2, 207–208. [Google Scholar] [CrossRef] [PubMed]
- Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Meo, M.; Rossi, M. Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos. Sci. Technol. 2006, 66, 1597–1605. [Google Scholar] [CrossRef]
- Set, S.; Yaguchi, H.; Tanaka, Y.; Jablonski, M. Ultrafast Fiber Pulsed Lasers Incorporating Carbon Nanotubes. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 137–146. [Google Scholar] [CrossRef]
- Tatsuura, S.; Furuki, M.; Sato, Y.; Iwasa, I.; Tian, M.; Mitsu, H. Semiconductor Carbon Nanotubes as Ultrafast Switching Materials for Optical Telecommunications. Adv. Mater. 2003, 15, 534–537. [Google Scholar] [CrossRef]
- Cho, W.B.; Yim, J.H.; Choi, S.Y.; Lee, S.; Schmidt, A.; Steinmeyer, G.; Griebner, U.; Petrov, V.; Yeom, D.-I.; Kim, K.; et al. Boosting the Non Linear Optical Response of Carbon Nanotube Saturable Absorbers for Broadband Mode-Locking of Bulk Lasers. Adv. Funct. Mater. 2010, 20, 1937–1943. [Google Scholar] [CrossRef]
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photonics 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Mirza, S.; Rahman, S.; Sarkar, A.; Rayfield, G. Carbon Nanotubes for Optical Power Limiting Applications. In Nanoscale Photonics and Optoelectronics; Wang, Z.M., Neogi, A., Eds.; Springer: New York, NY, USA, 2010; Volume 9, pp. 101–129. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Sazonkin, S.G.; Orekhov, I.O.; Kudelin, I.S.; Pnev, A.B.; Karasik, V.E.; Denisov, L.K.; Davydov, V.A. Low-saturation-energy Ultrafast Saturable Absorption of High-density Well-aligned Single-walled Carbon Nanotubes. In Applications of Lasers for Sensing and Free Space Communications; Optical Society of America: Vienna, Austria, 2019; p. JW2A-2. [Google Scholar] [CrossRef]
- Ivanov, V.; Fonseca, A.; Nagy, J.B.; Lucas, A.; Lambin, P.; Bernaerts, D.; Zhang, X.B. Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon 1995, 33, 1727–1738. [Google Scholar] [CrossRef]
- Hasan, T.; Sun, Z.; Wang, F.; Bonaccorso, F.; Tan, P.H.; Rozhin, A.G.; Ferrari, A.C. Nanotube-Polymer Composites for Ultrafast Photonics. Adv. Mater. 2009, 21, 3874–3899. [Google Scholar] [CrossRef]
- Baek, I.H.; Lee, H.W.; Bae, S.; Hong, B.H.; Ahn, Y.H.; Yeom, D.-I.; Rotermund, F. Efficient Mode-Locking of Sub-70-fs Ti:Sapphire Laser by Graphene Saturable Absorber. Appl. Phys. Express 2012, 5, 032701. [Google Scholar] [CrossRef]
- Popa, D.; Sun, Z.; Hasan, T.; Cho, W.B.; Wang, F.; Torrisi, F.; Ferrari, A.C. 74-fs nanotube-mode-locked fiber laser. Appl. Phys. Lett. 2012, 101, 153107. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Zhang, X.; Dong, X.; Tian, J.; Song, Y. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser. Laser Phys. 2013, 24, 015105. [Google Scholar] [CrossRef]
- Kim, C.; Bae, S.; Kieu, K.; Kim, J. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength. Opt. Express 2013, 21, 26533–26541. [Google Scholar] [CrossRef]
- Lazarev, V.; Krylov, A.; Dvoretskiy, D.; Sazonkin, S.; Pnev, A.; Leonov, S.; Shelestov, D.; Tarabrin, M.; Karasik, V.; Kireev, A.; et al. Stable Similariton Generation in an All-Fiber Hybrid Mode-Locked Ring Laser for Frequency Metrology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1028–1033. [Google Scholar] [CrossRef]
- Dvoretskiy, D.A.; Lazarev, V.A.; Voropaev, V.S.; Rodnova, Z.N.; Sazonkin, S.G.; Leonov, S.O.; Pnev, A.B.; Karasik, V.E.; Krylov, A.A. High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator. Opt. Express 2015, 23, 33295–33300. [Google Scholar] [CrossRef]
- Dvoretskiy, D.; Sazonkin, S.G.; Voropaev, V.S.; Leonov, S.O.; Pnev, A.B.; Karasik, V.E.; Krylov, A.A.; Obraztsova, E.D. Dispersion-managed soliton generation in the hybrid mode-locked erbium-doped all-fiber ring laser. In Proceedings of the 2016 International Conference Laser Optics, LO 2016, St. Petersburg, Russia, 27 June–1 July 2016. [Google Scholar] [CrossRef]
- Fermann, M.E. Nonlinear polarization evolution in passively modelocked fiber lasers. In Compact Sources of Ultrashort Pulses; Irl, I.I.I., Duling, N., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 179–207. [Google Scholar]
- Buckley, J. High-Energy Ultrafast Ytterbium Fiber Lasers; Cornell University: Ithaca, NY, USA, 2006. [Google Scholar]
- Maker, P.D.; Terhune, R.W. Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength. Phys. Rev. 1965, 137, A801–A818. [Google Scholar] [CrossRef]
- Dahlström, L. Mode-locking of high power lasers by a combination of intensity and time dependent Q-switching. Opt. Commun. 1973, 7, 89–92. [Google Scholar] [CrossRef]
- Ma, D.; Cai, Y.; Zhou, C.; Zong, W.; Chen, L.; Zhang, Z. 374 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate. Opt. Lett. 2010, 35, 2858–2860. [Google Scholar] [CrossRef]
- Fermann, M.; Hofer, M. Mode-Locked Fiber Lasers. In Rare-Earth-Doped Fiber Lasers and Amplifiers; Digonnet, M.J.F., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2001; p. 418. [Google Scholar] [CrossRef]
- Fermann, M.E.; Yang, L.-M.; Stock, M.L.; Andrejco, M.J. Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses. Opt. Lett. 1994, 19, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Mortimore, D. Fiber loop reflectors. J. Light. Technol. 1988, 6, 1217–1224. [Google Scholar] [CrossRef]
- Hui, R. Chapter 6—Passive optical components. In Introduction to Fiber-Optic Communications; Hui, R., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 209–297. [Google Scholar] [CrossRef]
- Zhao, L.M.; Bartnik, A.C.; Tai, Q.Q.; Wise, F.W. Generation of 8 nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror. Opt. Lett. 2013, 38, 1942–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Q.; Zhang, H.; Deng, D.; Zu, J. Dissipative Soliton Resonance in an All-Polarization Maintaining Fiber Laser With a Nonlinear Amplifying Loop Mirror. IEEE Photonics J. 2020, 12, 1502708. [Google Scholar] [CrossRef]
- Nakazawa, M.; Yoshida, E.; Kimura, Y. Generation of 98 fs optical pulses directly from an erbium-doped fibre ring laser at 1.57 μm. Electron. Lett. 1993, 29, 63–65. [Google Scholar] [CrossRef]
- Kovalev, A.V.; Viktorov, E.A.; Vladimirov, A.; Rebrova, N.; Huyet, G. Theoretical study of mode-locked lasers with nonlinear loop mirrors. In Semiconductor Lasers and Laser Dynamics VIII; SPIE: Bellingham, WA, USA, 2018; Volume 10682, p. 1068226. [Google Scholar] [CrossRef]
- Orekhov, I.O.; Sazonkin, S.G.; Bugai, K.E.; Dvoretskiy, D.A.; Shelestov, D.A.; Koshelev, K.V.; Khan, R.I.; Karasik, V.E.; Denisov, L.K.; Davydov, V.A. Mode-locking features in a sub-200-fs erbium-doped all-fiber laser based on high-density well-aligned single-walled carbon nanotubes. In Nonlinear Optics and Applications XII; SPIE: Bellingham, WA, USA, 2021; Volume 11770. [Google Scholar] [CrossRef]
- Li, X.; Zou, W.; Chen, J. 419 fs hybridly mode-locked Er-doped fiber laser at 212 MHz repetition rate. Opt. Lett. 2014, 39, 1553–1556. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.-G.; Chen, G.; Zhao, W.; Bai, J. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability. J. Opt. 2010, 12, 095204. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, T.; Ma, W.; Zhao, R. Hybrid Mode-Locked 2μm Fiber Laser Based on Nonlinear Polarization Rotation and Semiconductor Saturable Absorber Mirror. In Proceedings of the 2021 13th International Conference on Advanced Infocomm Technology, ICAIT 2021, Yanji, China, 15–18 October 2021; pp. 38–41. [Google Scholar] [CrossRef]
- Xu, B.; Martinez, A.; Set, S.; Goh, C.S.; Yamashita, S. A net normal dispersion all-fiber laser using a hybrid mode-locking mechanism. Laser Phys. Lett. 2013, 11, 25101. [Google Scholar] [CrossRef]
- Ilday, F.; Wise, F.W.; Sosnowski, T. High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Opt. Lett. 2002, 27, 1531–1533. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; Park, J.; Han, S.; Park, S.; Kim, Y.-J.; Kim, S.-W. Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power. Opt. Express 2012, 20, 15054–15060. [Google Scholar] [CrossRef]
RIN Values | Rms Rin Integration Range | |||
---|---|---|---|---|
# | Laser | PSD at 10 kHz [dB/Hz] | Rms [%] | |
1 | 78 MHz, NALM, Yb all-polarization-maintaining (PM) fiber laser (2020) [25] | −125 | 0.003 | [1 Hz, 1 MHz] |
2 | 78 MHz, NALM, Yb all-polarization-maintaining (PM) fiber laser (2020) [25] | −125 | 0.002 | [10 Hz, 100 kHz] |
3 | 700 MHz, NALM 215 fs, Yb:fiber laser (2018) [26] | −135 | 0.015 | [10 Hz–10 MHz] |
4 | 10-MHz, SESAM, all-normal dispersion all-PM Yb-fiber laser (2016) [27] | −117 | 0.018 | [10 Hz–2.5 MHz] |
5 | 32 MHz, 40 ps Yb fiber laser at 1032 nm (2019) [28] | −123 | 0.027 | [1 HZ–100kHz] |
6 | 60 kHz, SESAM, 1 ps Yb:glass fiber laser (2018) [29] | −125 | 0.023 | [10 Hz–10 MHz] |
7 | 161 MHz, NPE Yb-doped fiber laser, (2014) [30] | - | 0.02 | [1 kHz–5 MHz] |
8 | 882 MHz, NPE Yb fiber laser, (2019) [31] | - | 0.0074 | [1 MHz–100 Hz] |
9 | 54 MHz, 88 fs, NALM, Yb fiber laser (2021) [32] | −130 | 0.0055 | [20 Hz, 1 MHz] |
10 | 54 MHz, 88 fs, NALM, Yb fiber laser (2021) [32] | −145 | 0.02 | [20 Hz, 10 MHz] |
11 | 119 fs, all polarization maintaining (PM) Yb fiber laser based on NALM (2017) [33] | - | 0.18 | [1 Hz–1 MHz] |
12 | 200 kHz, 22 fs pulse compressed of 460 fs Yb fiber laser at 1.03 µm (2020) [34] | −125 | 0.05 | [2 HZ–100 kHz] |
13 | 85 MHz, 50 fs, 0.16 nJ pulse energy based on NALM (2019) [35] | - | 0.4 | [1 Hz–1 MHz] |
14 | 85 MHz, 50 fs,0.16 nJ pulse energy based on NALM, (self starting test and 0–45 °C high to low temperature test were carried out) (2019) [35] | - | 0.07 | [1 Hz–1 MHz] |
Parameter | Soliton | Stretched Pulses | Similariton | Dissipative Soliton |
---|---|---|---|---|
Total GVD of the resonator elements | <0 | close to 0 | close to 0 | >0 |
Maximum pulse energy | limited | limited | not limited | not limited |
Minimum pulse duration | ~1 ps | tens of femtoseconds | tens of femtoseconds | tens of femtoseconds |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sazonkin, S.G.; Orekhov, I.O.; Dvoretskiy, D.A.; Lazdovskaia, U.S.; Ismaeel, A.; Denisov, L.K.; Karasik, V.E. Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers. Fibers 2022, 10, 88. https://doi.org/10.3390/fib10100088
Sazonkin SG, Orekhov IO, Dvoretskiy DA, Lazdovskaia US, Ismaeel A, Denisov LK, Karasik VE. Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers. Fibers. 2022; 10(10):88. https://doi.org/10.3390/fib10100088
Chicago/Turabian StyleSazonkin, Stanislav G., Ilya O. Orekhov, Dmitriy A. Dvoretskiy, Uliana S. Lazdovskaia, Almikdad Ismaeel, Lev K. Denisov, and Valeriy E. Karasik. 2022. "Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers" Fibers 10, no. 10: 88. https://doi.org/10.3390/fib10100088
APA StyleSazonkin, S. G., Orekhov, I. O., Dvoretskiy, D. A., Lazdovskaia, U. S., Ismaeel, A., Denisov, L. K., & Karasik, V. E. (2022). Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers. Fibers, 10(10), 88. https://doi.org/10.3390/fib10100088