Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation for Accelerated Aging
2.1.1. Bamboo Substrates (Sample B)
2.1.2. Free Film Coatings (Sample C)
2.2. Artificial Accelerated Aging Test
2.3. Characterization
2.3.1. Scanning Electron Microscopy (SEM) Imaging
2.3.2. Contact Angle Measurements
2.3.3. UV-vis Spectroscopy of Free Films
2.3.4. Discoloration Measurement of Underlying Bamboo
2.3.5. Evaluation of One- and Two-Component UV Absorber Effects
2.3.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.4. Statistical Analysis
3. Results and Discussion
3.1. Determination of Bamboo Photoprotection from Films
3.1.1. Surface Discoloration of Underlying Bamboo
3.1.2. FTIR Spectra of Underlying Bamboo
3.1.3. Synergistic Effects of Films on the Photostability of Bamboo Surfaces
3.2. Mechanism for the Protection of Underlying Bamboo and Free Films by UV Absorbers
3.2.1. SEM Imaging of Free Films
3.2.2. Wettability of Free Films
3.2.3. UV-vis Spectroscopic Analysis of Free Films
3.2.4. FTIR-ATR Analysis of Free Films
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Ren, H. Comparative study of the photo-discoloration of moso bamboo (Phyllostachys pubescens Mazel) and two wood species. Appl. Surf. Sci. 2008, 254, 7029–7034. [Google Scholar] [CrossRef]
- Rao, F.; Chen, Y.; Li, N.; Zhao, X.; Bao, Y.; Wu, Z.; Ren, D.; Xu, J.; Cai, H. Preparation and Characterization of Outdoor Bamboo- Fiber-Reinforced Composites with Different Densities. BioResources 2017, 12, 6789–6811. [Google Scholar] [CrossRef]
- Wang, X.Q.; Ren, H.Q. Surface deterioration of moso bamboo (Phyllostachys pubescens) induced by exposure to artificial sunlight. J. Wood Sci. 2009, 55, 47–52. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, K.H.; Kim, J.S. Weathering characteristics of bamboo (Phyllostachys puberscence) exposed to outdoors for one year. J. Wood Sci. 2016, 62, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Zhang, Y.; Yu, W. Outdoor exposure tests of bamboo-fiber reinforced composite: evaluation of the physical and mechanical properties after two years. Eur. J. Wood Wood Prod. 2015, 73, 275–278. [Google Scholar] [CrossRef]
- Evans, P.; Mathews, M.J.C.B.; Schmalzl, K.; Ayer, S.; Kiguchi, M.; Kataoka, Y. Chapter 14 Weathering and Surface Protection of Wood; William Andrew Publishing: Norwich, NY, USA, 2005. [Google Scholar]
- Li, N.; Chen, Y.; Yu, H.; Xiong, F.; Yu, W.; Bao, M.; Wu, Z.; Huang, C.; Rao, F.; Li, J.; et al. Evaluation of optical properties and chemical structure changes in enzymatic hydrolysis lignin during heat treatment. RSC Adv. 2017, 7, 20760–20765. [Google Scholar] [CrossRef] [Green Version]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood degradation under UV irradiation: A lignin characterization. J. Photochem. Photobiol. B Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Rao, F.; Chen, Y.; Zhao, X.; Cai, H.; Li, N.; Bao, Y. Enhancement of bamboo surface photostability by application of clear coatings containing a combination of organic/inorganic UV absorbers. Prog. Org. Coat. 2018, 124, 314–320. [Google Scholar] [CrossRef]
- Forsthuber, B.; Schaller, C.; Grull, G. Evaluation of the photo stabilising efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces. Wood Sci. Technol. 2013, 47, 281–297. [Google Scholar] [CrossRef]
- Li, N.; Bao, M.; Rao, F.; Shu, Y.; Huang, C.; Huang, Z.; Chen, Y.; Bao, Y.; Guo, R.; Xiu, C. Improvement of surface photostability of bamboo scrimber by application of organic UV absorber coatings. J. Wood Sci. 2019, 65. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.; Bao, Y.; Zhang, Z.; Wu, Z.; Chen, Z. Evaluation of UV-permeability and photo-oxidisability of organic ultraviolet radiation-absorbing coatings. Appl. Surf. Sci. 2015, 332, 186–191. [Google Scholar] [CrossRef]
- Forsthuber, B.; Müller, U.; Teischinger, A.; Grüll, G. Chemical and mechanical changes during photooxidation of an acrylic clear wood coat and its prevention using UV absorber and micronized TiO2. Polym. Degrad. Stab. 2013, 98, 1329–1338. [Google Scholar] [CrossRef]
- Forsthuber, B.; Grüll, G. The effects of HALS in the prevention of photo-degradation of acrylic clear topcoats and wooden surfaces. Polym. Degrad. Stab. 2010, 95, 746–755. [Google Scholar] [CrossRef]
- Lowry, M.S.; Hubble, D.R.; Wressell, A.L.; Vratsanos, M.S.; Pepe, F.R.; Hegedus, C.R. Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation. J. Coat. Technol. Res. 2008, 5, 233–239. [Google Scholar] [CrossRef]
- Auclair, N.; Riedl, B.; Blanchard, V.; Blanchet, P. Improvement of photoprotection of wood coatings by using inorganic nanoparticles as ultraviolet absorbers. For. Prod. J. 2011, 61, 20–27. [Google Scholar] [CrossRef]
- Hong, R.Y.; Li, J.H.; Chen, L.L.; Liu, D.Q.; Li, H.Z.; Zheng, Y.; Ding, J. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009, 189, 426–432. [Google Scholar] [CrossRef]
- Vlad, M.; Riedl, B.; Blanchet, P. Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Prog. Org. Coat. 2010, 69, 432–441. [Google Scholar] [CrossRef]
- Vu, P.G.; Dung, N.T.; Duong, N.T.; Truc, T.A.; Thanh, D.T.M.; Hoang, T.; Van Truoc, B.; Hang, T.T.X.; Olivier, M. Effect of silane modified nano ZnO on UV degradation of polyurethane coatings. Prog. Org. Coat. 2014, 79, 68–74. [Google Scholar]
- Nair, S.; Nagarajappa, G.B.; Pandey, K.K. UV stabilization of wood by nano metal oxides dispersed in propylene glycol. J. Photochem. Photobiol. B Biol. 2018, 183, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pánek, M.; Oberhofnerová, E.; Zeidler, A.; Šedivka, P. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings 2017, 7, 172. [Google Scholar] [CrossRef]
- Pánek, M.; Oberhofnerová, E.; Hýsek, Š.; Šedivka, P.; Zeidler, A. Colour stabilization of oak, spruce, larch and douglas fir heartwood treated with mixtures of nanoparticle dispersions and UV-stabilizers after exposure to UV and VIS-radiation. Materials (Basel) 2018, 11, 1653. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-T.; Chou, P.-L. Photo-discoloration of UV-curable acrylic coatings and the underlying wood. Polym. Degrad. Stab. 1999, 63, 435–439. [Google Scholar] [CrossRef]
- Chou, P.L.; Chang, H.T.; Yeh, T.F.; Chang, S.T. Characterizing the conservation effect of clear coatings on photodegradation of wood. Bioresour. Technol. 2008, 99, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Chou, P.L. Photodiscoloration inhibition of wood coated with UV-curable acrylic clear coatings and its elucidation. Polym. Degrad. Stab. 2000, 69, 355–360. [Google Scholar] [CrossRef]
- Yu, H.; Yu, W.; Yang, L.; Fang, C.; Xu, M. Surface Discoloration Analysis and Lignin Degradation Fragments Identification of UV-Irradiated Moso Bamboo (Phyllostachys pubescens Mazel). BioResources 2015, 10, 1617–1626. [Google Scholar] [CrossRef]
- Shi, S.Q.; Gardner, D.J. Dynamic Adhesive Wettability of Wood. Wood Fiber Sci. 2001, 33, 58–68. [Google Scholar]
- Huang, X.; Kocaefe, D.; Boluk, Y.; Kocaefe, Y.; Pichette, A. Effect of surface preparation on the wettability of heat-treated jack pine wood surface by different liquids. Eur. J. Wood Wood Prod. 2012, 70, 711–717. [Google Scholar] [CrossRef]
- ASTM D 2244-07 Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates; ASTM: West Conshohocken, PA, USA, 2005.
- Liu, Y.; Fangru, X.; Jihang, H.; Hongwu, G. Photoehromic inhibition of dyed veneer covered with modified transparent film. Adv. Mater. Res. 2014, 933, 38–42. [Google Scholar] [CrossRef]
- Temiz, A.; Terziev, N.; Jacobsen, B.; Eikenes, M. Weathering, water absorption, and durability of silicon, acetylated, and heat-treated wood. J. Appl. Polym. Sci. 2006, 102, 4506–4513. [Google Scholar] [CrossRef]
- Gugumus, F. Possibilities and limits of synergism with light stabilizers in polyolefins 2. UV absorbers in polyolefins. Polym. Degrad. Stab. 2002, 75, 309–320. [Google Scholar] [CrossRef]
- Ayadi, N.; Lejeune, F.; Charrier El Bouhtoury, F.; Charrier, B.; Merlin, A. Color stability of heat-treated wood during artificial weathering. Eur. J. Wood Wood Prod. 2003, 61, 221–226. [Google Scholar] [CrossRef]
- Popescu, C.M.; Popescu, M.C.; Vasile, C. Structural analysis of photodegraded lime wood by means of FT-IR and 2D IR correlation spectroscopy. Int. J. Biol. Macromol. 2011, 48, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, Q.; Yao, Q.; Wang, J.; Han, S.; Jin, C. Fabrication of robust superhydrophobic bamboo based on ZnO nanosheet networks with improved water-, UV-, and fire-resistant properties. J. Nanomater. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Hayoz, P.; Peter, W.; Rogez, D. A new innovative stabilization method for the protection of natural wood. Prog. Org. Coat. 2003, 48, 297–309. [Google Scholar] [CrossRef]
- McNeill, I.C.; Mohammed, M.H. Thermal analysis of blends of low density polyethylene, poly(ethyl acrylate) and ethylene ethyl acrylate copolymer with polydimethylsiloxane. Polym. Degrad. Stab. 1995, 50, 285–295. [Google Scholar] [CrossRef]
- Haacke, G.; Longordo, E.; Brinen, J.S.; Andrawes, F.F.; Campbell, B.H. Chemisorption and physical adsorption of light stabilizers on pigment and ultrafine particles in coatings. J. Coat. Technol. 1999, 71, 87–94. [Google Scholar] [CrossRef]
- Mahltig, B.; Böttcher, H.; Rauch, K.; Dieckmann, U.; Nitsche, R.; Fritz, T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Films 2005, 485, 108–114. [Google Scholar] [CrossRef]
Coating Formulation | BTZ (wt %) | NZnO (wt %) | Content Ratio (BTZ: NZnO) | Additive Amount (g) | Anhydrous Alcohol (g) | Clear-Coat Resin (g) |
---|---|---|---|---|---|---|
Control (blank)-C * | 0 | 0 | – | 0 | 2.60 | 17.40 |
BTZ-C * | 3.00 | 0 | – | 0.6 a | 2.00 | 17.40 |
NZnO-C * | 0 | 3.00 | – | 3 b | 0 | 17.00 |
B3Z1-C | 2.25 | 0.75 | 3:1 | 0.45 a + 0.75 b | 1.40 | 17.40 |
B2Z1-C | 2.00 | 1.00 | 2:1 | 0.40 a + 1.00 b | 1.20 | 17.40 |
B1Z1-C * | 1.50 | 1.50 | 1:1 | 0.30 a + 1.50 b | 0.80 | 17.40 |
B1Z2-C | 1.00 | 2.00 | 1:2 | 0.20 a + 2.00 b | 0.40 | 17.40 |
B1Z3-C | 0.75 | 2.25 | 1:3 | 0.15 a + 2.25 b | 0.20 | 17.40 |
Parameters | Control (Blank)-C | BTZ-C | NZnO-C | B3Z1-C | B2Z1-C | B1Z1-C b | B1Z-C 2 | B1Z3-C |
---|---|---|---|---|---|---|---|---|
T (h) | 50 | 400 | 50 | 300 | 500 a | 450 | 300 | 200 |
ΔT (h) | — | — | — | 7.5 | 236.67 | 225 | 153.33 | 82.5 |
Coating Films | θi | θe | K-Value |
---|---|---|---|
Control (blank)-C | 29.27 | 27.53 | 0.0032 |
BTZ-C | 26.83 | 24.98 | 0.0122 |
NZnO-C | 25.68 | 11.59 | 0.0477 |
B3Z1-C | 56.81 | 55.09 | 0.0021 |
B2Z1-C | 63.83 | 61.52 | 0.0019 |
B1Z1-C | 70.41 | 65.98 | 0.0017 |
B1Z2-C | 56.91 | 54.88 | 0.0016 |
B1Z3-C | 70.96 | 69.22 | 0.0012 |
Coating Formulation | Fit Information |
---|---|
Control (blank)-C | Y = −8.748 × 10−6X + 0.069, R2 = 0.00469 |
BTZ-C | Y = 0.816exp(−X/94.915) + 1.137, R2 = 0.866 |
NznO-C | Y = −3.198 × 10−4X + 0.710, R2 = 0.831 |
B3Z1-C | Y = −3.472 × 10−4X + 2.040, R2 = 0.873 |
B2Z1-C | Y = −6.658 × 10−4X + 1.964, R2 = 0.953 |
B1Z1-C | Y = −8.498 × 10−4X + 1.820, R2 = 0.955 |
B1Z2-C | Y = −4.023 × 10−4X + 1.132, R2 = 0.937 |
B1Z3-C | Y = −2.667 × 10−4X + 0.959, R2 = 0.900 |
Coating Formulation | 1725 cm−1 | 1160 cm−1 | 995 cm−1 | |||
---|---|---|---|---|---|---|
Before Aging | After Aging | Before Aging | After Aging | Before Aging | After Aging | |
Control blank-C | 12.713 ± 0.032 | 7.430 ± 0.119 | 2.987 ± 0.007 | 1.938 ± 0.601 | 0.260 ± 0.002 | 0.174 ± 0.048 |
BTZ-C | 12.177 ± 0.338 | 10.370 ± 0.257 | 2.821 ± 0.075 | 2.386 ± 0.035 | 0.263 ± 0.006 | 0.210 ± 0.003 |
NZnO-C | 10.223 ± 0.909 | 11.009 ± 0.159 | 2.378 ± 0.224 | 2.627 ± 0.009 | 0.210 ± 0.019 | 0.232 ± 0.002 |
B3Z1-C | 8.504 ± 0.471 | 6.200 ± 0.692 | 1.952 ± 0.165 | 1.265 ± 0.162 | 0.160 ± 0.052 | 0.113 ± 0.011 |
B2Z1-C | 8.867 ± 0.332 | 5.878 ± 0.434 | 2.087 ± 0.062 | 1.271 ± 0.092 | 0.189 ± 0.011 | 0.109 ± 0.007 |
B1Z1-C | 10.667 ± 0.225 | 11.164 ± 0.193 | 2.278 ± 0.702 | 2.627 ± 0.011 | 0.244 ± 0.002 | 0.231 ± 0.001 |
B1Z2-C | 8.627 ± 0.781 | 4.775 ± 0.485 | 2.164 ± 0.231 | 1.179 ± 0.124 | 0.154 ± 0.016 | 0.095 ± 0.010 |
B1Z3-C | 8.551 ± 0.425 | 4.371 ± 0.523 | 2.084 ± 0.138 | 1.082 ± 0.154 | 0.175 ± 0.014 | 0.089 ± 0.012 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, F.; Zhang, Y.; Bao, M.; Zhang, Z.; Bao, Y.; Li, N.; Chen, Y.; Yu, W. Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles. Coatings 2019, 9, 533. https://doi.org/10.3390/coatings9090533
Rao F, Zhang Y, Bao M, Zhang Z, Bao Y, Li N, Chen Y, Yu W. Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles. Coatings. 2019; 9(9):533. https://doi.org/10.3390/coatings9090533
Chicago/Turabian StyleRao, Fei, Yahui Zhang, Minzhen Bao, Zhiyuan Zhang, Yongjie Bao, Neng Li, Yuhe Chen, and Wenji Yu. 2019. "Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles" Coatings 9, no. 9: 533. https://doi.org/10.3390/coatings9090533
APA StyleRao, F., Zhang, Y., Bao, M., Zhang, Z., Bao, Y., Li, N., Chen, Y., & Yu, W. (2019). Photostabilizing Efficiency of Acrylic-based Bamboo Exterior Coatings Combining Benzotriazole and Zinc Oxide Nanoparticles. Coatings, 9(9), 533. https://doi.org/10.3390/coatings9090533