Surface Properties of Pine Scrimber Panels with Varying Density
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Scrimber Fabrication
2.2.2. Sanding Treatment
2.2.3. Surface Wettability
2.2.4. Determination of Surface Roughness
2.2.5. Surface Observation
2.2.6. X-ray Photoelectron Spectroscopy (XPS)
3. Results
3.1. Surface Wettability
3.2. Surface Roughness
3.3. Surface Morphology
3.4. Surface XPS Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coleman, J. A “Reconsolidated” Wood for Structural Purposes; Division of Chem Tech CSIRO: Melbourne, Australia, 1981; pp. 1–10. [Google Scholar]
- Kollmann, F.F.; Kuenzi, E.W.; Stamm, A.J. Principles of Wood Science and Technology: II Wood Based Materials; Springer Science & Business Media: Cham, Switzerland, 2012. [Google Scholar]
- Joščák, T.; Müller, U.; Linz, A.; Mauritz, R.; Teischinger, A. Production and material performance of long–strand wood composites. Wood Res. 2006, 51, 37–50. [Google Scholar]
- He, M.; Tao, D.; Li, Z.; Li, M. Mechanical behavior of dowel-type joints made of wood scrimber composite. Materials 2016, 9, 581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Yu, Y.; Yu, W. Scrimber board (SB) manufacturing by a new method and characterization of SB’s mechanical properties and dimensional stability. Holzforschung 2018, 72, 283–289. [Google Scholar] [CrossRef]
- Wei, Y.; Rao, F.; Yu, Y.; Huang, Y.; Yu, W. Fabrication and performance evaluation of a novel laminated veneer lumber (LVL) made from hybrid poplar. Eur. J. Wood Wood Prod. 2019, 77, 381–391. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Y.; Huang, Y.; Yu, Y.; Liang, Y.; Yu, W. Influence of veneer thickness, mat formation and resin content on some properties of novel poplar scrimbers. Holzforschung 2018, 72, 673–680. [Google Scholar] [CrossRef]
- Yalinkiliç, M.K.; Ilhan, R.; Imamura, Y.; Takahashi, M.; Demirci, Z.; Yalmkiliç, A.C.; Peker, H. Weathering durability of CCB-impregnated wood for clear varnish coatings. J. Wood Sci. 1999, 45, 502–514. [Google Scholar] [CrossRef]
- Pánek, M.; Dvořák, O.; Oberhofnerová, E.; Šimůnková, K.; Zeidler, A. Effectiveness of two different hydrophobic topcoats for increasing of durability of exterior coating systems on oak wood. Coatings 2019, 9, 280. [Google Scholar] [CrossRef]
- Xu, J.; Liu, R.; Wu, H.; Qiu, H.; Yu, Y.; Long, L. Coating performance of water-based polyurethane-acrylate coating on bamboo/bamboo scrimber substrates. Adv. Polym. Technol. 2019, 2019, 4264701. [Google Scholar] [CrossRef]
- Kúdela, J.; Liptáková, E. Adhesion of coating materials to wood. J. Adhes. Sci. Technol. 2006, 20, 875–895. [Google Scholar] [CrossRef]
- Wulf, M.; Netuschil, P.; Hora, G.; Schmich, P.; Cammenga, H. Investigation of the wetting characteristics of medium density fibreboards (MDF) by means of contact angle measurements. Holz als Roh-und Werkstoff 1997, 55, 331–335. [Google Scholar] [CrossRef]
- Petrič, M.; Knehtl, B.; Krause, A.; Militz, H.; Pavlič, M.; Pétrissans, M.; Rapp, A.; Tomažič, M.; Welzbacher, C.; Gérardin, P. Wettability of waterborne coatings on chemically and thermally modified pine wood. J. Coat. Technol. Res. 2007, 4, 203–206. [Google Scholar] [CrossRef]
- De Moura, L.F.; Hernández, R.E. Evaluation of varnish coating performance for two surfacing methods on sugar maple wood. Wood Fiber Sci. 2007, 37, 355–366. [Google Scholar]
- Gavrilovic-Grmusa, I.; Dunky, M.; Miljkovic, J.; Djiporovic-Momcilovic, M. Influence of the viscosity of UF resins on the radial and tangential penetration into poplar wood and on the shear strength of adhesive joints. Holzforschung 2012, 66, 849–856. [Google Scholar] [CrossRef]
- Fang, Q.; Cui, H.-W.; Du, G.-B. Surface wettability, surface free energy, and surface adhesion of microwave plasma-treated Pinus yunnanensis wood. Wood Sci. Technol. 2016, 50, 285–296. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Mai, Z.; Ma, Y.; Liu, B.; Jiang, L.; Zhu, D. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie 2004, 116, 2046–2048. [Google Scholar] [CrossRef]
- Chen, Z.; Li, F.; Hao, L.; Chen, A.; Kong, Y. One-step electrodeposition process to fabricate cathodic superhydrophobic surface. Appl. Surf. Sci. 2011, 258, 1395–1398. [Google Scholar] [CrossRef]
- Wenzel, R. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Huang, Y.; Qi, Y.; Zhang, Y.; Zhu, R.; Zhang, Y.; Yu, W. Surface properties of novel wood-based reinforced composites manufactured from crushed veneers and phenolic resins. Maderas Ciencia Tecnología Construction AHEAD 2019, 21, 185–196. [Google Scholar] [CrossRef]
- Cool, J.; Hernández, R.E. Improving the sanding process of black spruce wood for surface quality and water-based coating adhesion. For. Prod. J. 2011, 61, 372–380. [Google Scholar] [CrossRef]
- Stehr, M.; Gardner, D.J.; Wålinder, M.E. Dynamic wettability of different machined wood surfaces. J. Adhes. 2001, 76, 185–200. [Google Scholar] [CrossRef]
- Akbulut, T.; Ayrilmis, N.J.S.F. Effect of compression wood on surface roughness and surface absorption of medium density fiberboard. Silva Fennica 2006, 40, 161–167. [Google Scholar] [CrossRef][Green Version]
- Bao, M.; Huang, X.; Zhang, Y.; Yu, W.; Yu, Y. Effect of density on the hygroscopicity and surface characteristics of hybrid poplar compreg. J. Wood Sci. 2016, 62, 441–451. [Google Scholar] [CrossRef]
- Priadi, T.; Hiziroglu, S. Characterization of heat-treated wood species. Mater. Des. 2013, 49, 575–582. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Forte, M.M.; Santana, R.M. Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresour. Technol. 2012, 109, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Patachia, S.; Croitoru, C.; Friedrich, C. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids. Appl. Surf. Sci. 2012, 258, 6723–6729. [Google Scholar] [CrossRef]
- Shi, S.Q.; Gardner, D.J. Dynamic adhesive wettability of wood. Wood Fiber Sci. 2007, 33, 58–68. [Google Scholar]
- Croitoru, C.; Spirchez, C.; Lunguleasa, A.; Cristea, D.; Roata, I.C.; Pop, M.A.; Bedo, T.; Stanciu, E.M.; Pascu, A. Surface properties of thermally treated composite wood panels. Appl. Surf. Sci. 2018, 438, 114–126. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Tibirna, C.-M.; Vasile, C. XPS characterization of naturally aged wood. Appl. Surf. Sci. 2009, 256, 1355–1360. [Google Scholar] [CrossRef]
- Liu, F.P.; Gardner, D.J.; Wolcott, M.P. A model for the description of polymer surface dynamic behavior 1. Contact angle vs polymer surface properties. Langmuir 1995, 11, 2674–2681. [Google Scholar] [CrossRef]
- Mantanis, G.; Young, R. Wetting of wood. Wood Sci. Technol. 1997, 31, 339–353. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Odrášková, M.; Zahoranová, A.; Tiňo, R.; Černák, M. Plasma activation of wood surface by diffuse coplanar surface barrier discharge. Plasma Chem. Plasma Process. 2008, 28, 203–211. [Google Scholar] [CrossRef]
- Garnier, G.; Glasser, W.G. Measuring the surface energies of spherical cellulose beads by inverse gas chromatography. Polym. Eng. Sci. 1996, 36, 885–894. [Google Scholar] [CrossRef]
- Unsal, O.; Candan, Z.; Buyuksari, U.; Korkut, S.; Babiak, M. Effects of thermal modification on surface characteristics of OSB panels. Wood Res. 2010, 55, 51–58. [Google Scholar]
- Prabhu, K.N.; Fernades, P.; Kumar, G. Effect of substrate surface roughness on wetting behaviour of vegetable oils. Mater. Des. 2009, 30, 297–305. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface roughness and contact angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Sulaiman, O.; Hashim, R.; Subari, K.; Liang, C. Effect of sanding on surface roughness of rubberwood. J. Mater. Process. Technol. 2009, 209, 3949–3955. [Google Scholar] [CrossRef]
- Inari, G.N.; Petrissans, M.; Lambert, J.; Ehrhardt, J.J.; Gérardin, P. XPS characterization of wood chemical composition after heat-treatment. Surf. Interface Anal. 2006, 38, 1336–1342. [Google Scholar] [CrossRef]
- Meng, F.-D.; Yu, Y.-L.; Zhang, Y.-M.; Yu, W.-J.; Gao, J.-M. Surface chemical composition analysis of heat-treated bamboo. Appl. Surf. Sci. 2016, 371, 383–390. [Google Scholar] [CrossRef]
- Hon, D.N.S. ESCA study of oxidized wood surfaces. J. Appl. Polym. Sci. 1984, 29, 2777–2784. [Google Scholar] [CrossRef]
- Martino, C.J.; Shrauti, S.; Banerjee, S.; Otwell, L.P.; Price, E.W. Flake drying temperature affects mat properties during pressing. Holzforschung 2002, 56, 558–562. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, R.; Huang, Y.; Meng, F.; Yu, W. Preparation, physical, mechanical, and interfacial morphological properties of engineered bamboo scrimber. Constr. Build. Mater. 2017, 157, 1032–1039. [Google Scholar] [CrossRef]
- Börås, L.; Gatenholm, P. Surface composition and morphology of CTMP fibers. Holzforschung 1999, 53, 188–194. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M.J.P.D. Characterization of weathered wood–plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Polym. Degrad. Stab. 2007, 92, 1883–1890. [Google Scholar] [CrossRef]
Density (g/cm3) | Surface Energy Components (mJ/m2) | ||||
---|---|---|---|---|---|
0.80 | 51.60 | 41.80 | 9.80 | 2.86 | 8.41 |
1.01 | 49.17 | 38.91 | 10.26 | 3.61 | 7.29 |
1.20 | 46.51 | 36.65 | 9.86 | 4.08 | 5.95 |
1.39 | 44.96 | 35.75 | 9.21 | 4.08 | 5.20 |
Sample | O/C | Cox/Cunox | Component (%) | |||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | |||
Pine wood | 0.54 | 1.29 | 43.72 | 29.56 | 24.53 | 2.19 |
Panel 0.80 1 | 0.53 | 1.06 | 48.62 | 40.85 | 8.46 | 2.07 |
Panel 1.01 | 0.52 | 0.96 | 50.98 | 39.77 | 7.94 | 1.31 |
Panel 1.20 | 0.49 | 0.92 | 51.99 | 38.83 | 7.47 | 1.71 |
Panel 1.39 | 0.40 | 0.53 | 65.21 | 24.55 | 8.80 | 1.43 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Lin, Q.; Zhang, Y.; Yu, W.; Hse, C.-Y.; Shupe, T. Surface Properties of Pine Scrimber Panels with Varying Density. Coatings 2019, 9, 397. https://doi.org/10.3390/coatings9060397
Wei J, Lin Q, Zhang Y, Yu W, Hse C-Y, Shupe T. Surface Properties of Pine Scrimber Panels with Varying Density. Coatings. 2019; 9(6):397. https://doi.org/10.3390/coatings9060397
Chicago/Turabian StyleWei, Jinguang, Qiuqin Lin, Yahui Zhang, Wenji Yu, Chung-Yun Hse, and Todd Shupe. 2019. "Surface Properties of Pine Scrimber Panels with Varying Density" Coatings 9, no. 6: 397. https://doi.org/10.3390/coatings9060397
APA StyleWei, J., Lin, Q., Zhang, Y., Yu, W., Hse, C.-Y., & Shupe, T. (2019). Surface Properties of Pine Scrimber Panels with Varying Density. Coatings, 9(6), 397. https://doi.org/10.3390/coatings9060397