# Analysis of a Thin Layer Formation of Third-Grade Fluid

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. OHAM Formulation

## 4. Solution and Main Results

## 5. Summary and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bhatti, S.; Zahid, M.; Rana, M.A.; Siddiqui, A.M.; Abdul Wahab, H. Numerical analysis of blade coating of a third-order fluid. J. Plast. Film Sheet.
**2019**, 35, 157–180. [Google Scholar] [CrossRef] - Kandasamy, R.; Muhammad, R. Thermal radiation energy on squeezed MHD flow of Cu, Al
_{2}O_{3}and CNTs-nanofluid over a sensor surface. Alex. Eng. J.**2016**, 55, 2405–2421. [Google Scholar] - Tripathi, J.J.; Kedar, G.D.; Deshmukh, K.C. Generalized thermoelastic diffusion in a thick circular plate including heat source. Alex. Eng. J.
**2016**, 55, 2241–2249. [Google Scholar] [CrossRef] - Javed, T.; Ahmad, H.; Ghaffari, A. Influence of radiation on vertical wavy surface with constant heat flux: Using Keller box scheme. Alex. Eng. J.
**2016**, 55, 2221–2228. [Google Scholar] [CrossRef] [Green Version] - Banik, S.; Mallik, S.H.; Kanoria, M. Thermoelastic interaction with energy dissipation in an infinite solid with distributed periodicallyvarying heat sources. Int. J. Pure Appl. Math.
**2007**, 34, 231. [Google Scholar] - Singh, B. Wave propagation in a generalized thermoelastic material with voids. Appl. Math. Comput.
**2007**, 189, 698–709. [Google Scholar] [CrossRef] - Mallik, S.H.; Kanoria, M. Generalized thermoelastic functionally graded solid with a periodically varying heat source. Int. J. Solids Struct.
**2007**, 44, 7633–7645. [Google Scholar] [CrossRef] - Hayat, T.; Farooq, S.; Alsaedi, A.; Ahmad, B. Numerical study for Soret and Dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid. Int. J. Therm. Sci.
**2017**, 112, 68–81. [Google Scholar] [CrossRef] - Ailawalia, P.; Kumar, S.; Pathania, D.S. Internal heat source in thermoelastic microelongated solid under green lindsay theory. J. Theor. Appl. Mech.
**2016**, 46, 65–82. [Google Scholar] [CrossRef] - Mallik, S.H.; Kanoria, M. A two dimensional problem for a transversely isotropic generalized thermoelastic thick plate with spatially varying heat source. Eur. J. Mech.-A/Solids
**2008**, 27, 607–621. [Google Scholar] [CrossRef] - Das, P.; Kar, A.; Kanoria, M. Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stresses
**2013**, 36, 239–258. [Google Scholar] [CrossRef] - Tripathi, J.; Warbhe, S.; Deshmukh, K.C.; Verma, J. Fractional order generalized thermoelastic response in a half space due to a periodically varying heat source. Multidiscip. Model. Mater. Struct.
**2018**, 14, 2–15. [Google Scholar] [CrossRef] - Sur, A.; Kanoria, M. Analysis of thermoelastic response in a functionally graded infinite space subjected to a Mode-I crack. Int. J. Adv. Appl. Math. Mech.
**2015**, 3, 33–44. [Google Scholar] - Abbas, I.A.; Marin, M. Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating. Phys. E Low-Dimens. Syst. Nanostructures
**2017**, 87, 254–260. [Google Scholar] [CrossRef] - Carapau, F.; Correia, P.; Grilo, L.M. Specific shear-dependent viscoelastic third-grade fluid model. AIP Conf. Proc.
**2016**, 1790, 140008. [Google Scholar] - Middleman, S. Fundamentals of Polymer Processing; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- Ruschak, K.J. Coating flows. Annu. Rev. Fluid Mech.
**1985**, 17, 65–89. [Google Scholar] [CrossRef] - Blake, T.D.; Ruschak, K.J.; Kistler, S.F.; Schweizer, P.M. Liquid Film Coating; Chapman & Hall: London, UK, 1997. [Google Scholar]
- Gaskell, P.H.; Savage, M.D.; Summers, J.L. The Mechanics of Thin Film Coatings. In Proceedings of the First European Coating Symposium, Leeds University, Leeds, UK, 19–22 September 1995; p. 424. [Google Scholar]
- Bourgin, P. Fluid Mechanics of Coating Processes. In Proceedings of the Euromech 367, 2nd European Coating Symposium (ECS’97), Universite Louis Pasteur, Strasbourg, France, 22–25 July 1997; p. 504. [Google Scholar]
- Sajid, M.; Ali, N.; Javed, M.A. An exact solution for the calendering analysis of a third-order fluid. J. Plast. Film Sheet.
**2017**, 33, 124–141. [Google Scholar] [CrossRef] - Herisanu, N.; Marinca, V. Accurate analytical solutions to oscillators with discontinuities and fractional-power restoring force by means of the optimal homotopy asymptotic method. Comput. Math. Appl.
**2010**, 60, 1607–1615. [Google Scholar] [CrossRef] [Green Version] - Marinca, V.; Herisanu, N. Determination of periodic solutions for the motion of a particle on a rotating parabola by means of the optimal homotopy asymptotic method. J. Sound Vib.
**2010**, 329, 1450–1459. [Google Scholar] [CrossRef] - Iqbal, S.; Idrees, M.; Siddiqui, A.M.; Ansari, A.R. Some solutions of the linear and nonlinear Klein-Gordon equations using the optimal homotopy asymptotic method. Appl. Math. Comput.
**2010**, 216, 2898–2909. [Google Scholar] [CrossRef] - Iqbal, S.; Javed, A. Application of optimal homotopy asymptotic method for the analytic solution of singular Lane-Emden type equation. Appl. Math. Comput.
**2011**, 217, 7753–7761. [Google Scholar] [CrossRef] - Iqbal, S.; Ansari, A.R.; Siddiqui, A.M.; Javed, A. Use of optimal homotopy asymptotic method and Galerkin-s finite element formulation in the study of heat transfer flow of a third grade fluid between parallel plates. J. Heat Transf.
**2011**, 133, 091702. [Google Scholar] [CrossRef] - Javed, A.; Memon, N.A.; Iqbal, S. Optimal homotopy asymptotic method for solving sixth-order boundary value problems. QUEST Res. J.
**2010**, 9, 6–10. [Google Scholar] - Hashmi, M.S.; Khan, N.; Iqbal, S. Numerical solutions of weakly singular Volterra integral equations using the optimal homotopy asymptotic method. Comput. Math. Appl.
**2012**, 64, 1567–1574. [Google Scholar] [CrossRef] [Green Version] - Hashmi, M.S.; Khan, N.; Iqbal, S. Optimal homotopy asymptotic method for solving nonlinear Fredholm integral equations of second kind. Appl. Math. Comput.
**2012**, 218, 10982–10989. [Google Scholar] [CrossRef] - Younas, H.M.; Mustahsan, M.; Manzoor, T.; Salamat, N.; Iqbal, S. Dynamical study of fokker-planck equations by using optimal homotopy asymptotic method. Mathematics
**2019**, 7, 264. [Google Scholar] [CrossRef] - Siddiqui, A.M.; Kaloni, P.N. Plane steady flows of a third grade fluid. Int. J. Eng. Sci.
**1987**, 25, 171–188. [Google Scholar] [CrossRef] - Zahid, M.; Haroon, T.; Rana, M.A.; Siddiqui, A.M. Roll coating analysis of a third grade fluid. J. Plast. Film Sheet.
**2017**, 33, 72–91. [Google Scholar] [CrossRef] - Siddiqui, A.M.; Zahid, M.; Rana, M.A.; Haroon, T. Calendering analysis of a third-order fluid. J. Plast. Film Sheet.
**2014**, 30, 345–368. [Google Scholar] [CrossRef] - Sullivan, T.M.; Middleman, S. Film thickness in blade coating of viscous and viscoelastic liquids. J. Non-Newton. Fluid Mech.
**1986**, 21, 13–38. [Google Scholar] [CrossRef] - Greener, Y.; Middleman, S. Blade-coating of a viscoelastic fluid. Polym. Eng. Sci.
**1974**, 14, 791–796. [Google Scholar] [CrossRef] - Ross, A.B.; Wilson, S.K.; Duffy, B.R. Blade coating of a power-law fluid. Phys. Fluids
**1999**, 11, 958–970. [Google Scholar] [CrossRef] - Hwang, S.S. Non-Newtonian liquid blade coating process. J. Fluids Eng.
**1982**, 104, 469–474. [Google Scholar] [CrossRef] - Dien, I.K.; Elrod, H.G. A generalized steady-state Reynolds equation for non-Newtonian fluids, with application to journal bearings. J. Lubr. Technol.
**1983**, 105, 385–390. [Google Scholar] [CrossRef] - Tichy, J.A. Non-Newtonian lubrication with the convected Maxwell model. J. Tribol.
**1996**, 118, 344–348. [Google Scholar] [CrossRef] - Hsu, T.C.; Malone, M.; Laurence, R.L.; Middleman, S. Separating forces in blade coating of viscous and viscoelastic liquids. J. Non-Newton. Fluid Mech.
**1985**, 18, 273–294. [Google Scholar] [CrossRef] - Fosdick, R.L.; Rajagopal, K.R. Thermodynamics and stability of fluids of third grade. Proc. R. Soc. Lond. A
**1980**, 369, 351–377. [Google Scholar] [CrossRef] - Atif, H.M.; Ali, N.; Javed, M.A.; Abbas, F. Theoretical analysis of roll-over-web coating of a micropolar fluid under lubrication approximation theory. J. Plast. Film Sheet.
**2018**, 34. [Google Scholar] [CrossRef] - Ali, N.; Atif, H.M.; Javed, M.A.; Sajid, M. A theoretical analysis of roll-over-web coating of couple stress fluid. J. Plast. Film Sheet.
**2018**, 34, 43–59. [Google Scholar] [CrossRef]

**Figure 3.**$u\left(s\right)$ at different values of $\mathsf{\beta}$ and varying ranges of $s$. (

**a**) with the s range of [0–2]; (

**b**) with the s range of [0–3]; (

**c**) with the s range of [0–5]; (

**d**) with the s range of [0–10].

**Figure 5.**$\mathsf{\lambda}$ at different values of ${P}_{r}$ and $s$. (

**a**) with the s range of [0–2]; (

**b**) with the s range of [0–3]; (

**c**) with the s range of [0–7]; (

**d**) with the s range of [0–12].

**Figure 7.**$u\left(s\right)$ at different values of $\frac{\mathrm{d}P}{\mathrm{d}r}$ and $s$. (

**a**) with the s range of [0–2]; (

**b**) with the s range of [0–3]; (

**c**) with the s range of [0–7]; (

**d**) with the s range of [0–12].

**Figure 9.**Normal stress at different values of $\mathsf{\alpha}$ and $s$. (

**a**) with the s range of [0–2]; (

**b**) with the s range of [0–3]; (

**c**) with the s range of [0–5]; (

**d**) with the s range of [0–7].

β and C_{1} | |
---|---|

β | C_{1} |

0.03 | −0.6027727875127079 |

0.04 | −0.5367678225757836 |

0.05 | 0.4849617709110862 |

0.06 | −0.44305755184121864 |

For Fixed β = 0.03 | |
---|---|

P_{r} | C_{1} |

1 | −0.7389837541589072 |

1.5 | −0.6670404279185341 |

2 | −0.6027727875127079 |

2.5 | −0.5456887819699325 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Manzoor, T.; Nazar, K.; Zafar, M.; Iqbal, S.; Ali, M.; Kim, W.Y.; Saleem, M.; Manzoor, S.
Analysis of a Thin Layer Formation of Third-Grade Fluid. *Coatings* **2019**, *9*, 741.
https://doi.org/10.3390/coatings9110741

**AMA Style**

Manzoor T, Nazar K, Zafar M, Iqbal S, Ali M, Kim WY, Saleem M, Manzoor S.
Analysis of a Thin Layer Formation of Third-Grade Fluid. *Coatings*. 2019; 9(11):741.
https://doi.org/10.3390/coatings9110741

**Chicago/Turabian Style**

Manzoor, Tareq, Kashif Nazar, Muhammad Zafar, Shaukat Iqbal, Muddassir Ali, Woo Young Kim, Mahmood Saleem, and Sanaullah Manzoor.
2019. "Analysis of a Thin Layer Formation of Third-Grade Fluid" *Coatings* 9, no. 11: 741.
https://doi.org/10.3390/coatings9110741