The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manufacturing of Materials
2.2. Plasma Treatment
2.3. Mechanical Fatigue Tests
2.4. Microscopy
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xi, Y.; Liu, D.; Han, D. Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature. Surf. Coat. Technol. 2008, 202, 2577–2583. [Google Scholar] [CrossRef]
- Jiang, L.; Tang, Z.; Clinton, R.M.; Breedveld, V.; Hess, D.W. Two-step process to create “roll-off” superamphiphobic paper surfaces. ACS Appl. Mater. Interfaces 2017, 9, 9195–9203. [Google Scholar] [CrossRef] [PubMed]
- Cheruthazhekatt, S.; Černák, M.; Slavíček, P.; Havel, J. Gas plasmas and plasma modified materials in medicine. J. Appl. Biomed. 2010, 8, 55–66. [Google Scholar] [CrossRef]
- Hauert, R.; Thorwarth, K.; Thorwarth, G. An overview on diamond-like carbon coatings in medical applications. Surf. Coat. Technol. 2013, 233, 119–130. [Google Scholar] [CrossRef]
- Stüber, M.; Niederberger, L.; Danneil, F.; Leiste, H.; Ulrich, S.; Welle, A.; Marin, M.; Fischer, H. Surface topography, surface energy and wettability of magnetron-sputtered amorphous carbon (a-C) films and their relevance for platelet adhesion. Adv. Eng. Mater. 2007, 10, 1114–1122. [Google Scholar] [CrossRef]
- Wang, J.; Yang, P.; Sun, H.; Chen, J.Y.; Leng, Y.X.; Wan, G.J.; Huang, N. Surface modification of medical polyurethane by acetylene plasma immersion ion implantation. In Proceedings of the 30th International Conference on Plasma Science, Jeju, Korea, 2–5 June 2003; p. 282. [Google Scholar]
- Alekhin, A.P.; Boleiko, G.M.; Gudkova, S.A.; Markeev, A.M.; Sigarev, A.A.; Toknova, V.F.; Kirilenko, A.G.; Lapshin, R.V.; Kozlov, E.N.; Tetyukhin, D.V. Synthesis of biocompatible surfaces by nanotechnology methods. Nanotechnol. Russia 2010, 5, 696–708. [Google Scholar] [CrossRef]
- Kosobrodova, E.A.; Kondyurin, A.V.; Fisher, K.; Moeller, W.; McKenzie, D.R.; Bilek, M.M.M. Free radical kinetics in a plasma immersion ion implanted polystyrene: Theory and experiment. Nucl. Instrum. Methods B 2012, 280, 26–35. [Google Scholar] [CrossRef]
- Melnig, V.; Apetroaei, N.; Dumitrascu, N.; Suzuki, Y.; Tura, V. Improvement of polyurethane surface biocompatibility by plasma and ion beam techniques. J. Optoelectron. Adv. Mater. 2005, 7, 2521–2528. [Google Scholar]
- Cao, H.; Liu, X.; Meng, F.; Chu, P.K. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 2011, 32, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, Y.; Ji, J.; Yan, Q.; Huang, A.; Chu, P.K. Antimicrobial polyethylene with controlled copper release. J. Biomed. Mater. Res. A 2007, 83A, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Jiří, K.; Kahoun, D.; Štěrba, J.; Langhansová, H.; Lieskovská, J.; Fojtíková, P.; Hanuš, J.; Kousal, J.; Kylián, O.; Straňák, V. Plasma polymerized C:H:N:O thin films for controlled release of antibiotic substances. Plasma Process. Polym. 2017, e1700160. [Google Scholar] [CrossRef]
- Bonaccurso, E.; Cappella, B.; Graf, K. Local mechanical properties of plasma treated polystyrene surfaces. J. Phys. Chem. B 2006, 110, 17918–17924. [Google Scholar] [CrossRef] [PubMed]
- Kondyurina, I.; Nechitailo, G.S.; Svistkov, A.L.; Kondyurin, A.; Bilek, M. Urinary catheter with polyurethane coating modified by ion implantation. Nucl. Instrum. Methods B 2015, 342, 39–46. [Google Scholar] [CrossRef]
- Tsougeni, K.; Tserepi, A.; Boulousis, G.; Constantoudis, V.; Gogolides, E. Control of nanotexture and wetting properties of polydimethylsiloxane from very hydrophobic to super-hydrophobic by plasma processing. Plasma Process. Polym. 2007, 4, 398–405. [Google Scholar] [CrossRef]
- Perera-Costa, D.; Bruque, J.M.; González-Martín, M.L.; Gómez-García, A.C.; Vadillo-Rodríguez, V. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns. Langmuir 2014, 30, 4633–4641. [Google Scholar] [CrossRef] [PubMed]
- Morozov, I.A.; Mamaev, A.S.; Osorgina, I.V.; Lemkina, L.M.; Korobov, V.P.; Belyaev, A.Y.; Porozova, S.E.; Sherban, M.G. Structural-mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N2+ implantation. Mater. Sci. Eng. C 2016, 62, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Bowden, N.; Brittain, S.; Evans, A.G.; Hutchinson, J.W.; Whitesides, G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 1998, 393, 146–149. [Google Scholar] [CrossRef]
- Morozov, I.A.; Mamaev, A.S.; Osorgina, I.V.; Beliaev, A.Y.; Izumov, R.I.; Oschepkova, T.E. Soft polyurethanes treated by plasma immersion ion implantation: Structural-mechanical properties of surface modified layer. J. Appl. Polym. Sci. 2018, 135, 45983. [Google Scholar] [CrossRef]
- Panchuk, D.A.; Sadakbaeva, Z.K.; Bagrov, D.V.; Kechek’yan, A.S.; Bol’shakova, A.V.; Abramchuk, S.S.; Yarysheva, L.M.; Volynskii, A.L.; Bakeev, N.F. Specific features of surface structuring during deformation of plasma-treated polymer films. Polym. Sci. A 2010, 52, 794–800. [Google Scholar] [CrossRef]
- Gavrilov, N.V.; Mamaev, A.S. Low-temperature nitriding of titanium in low-energy electron beam excited plasma. Tech. Phys. Lett. 2009, 35, 713–716. [Google Scholar] [CrossRef]
- Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation. IOP Conf. Ser. Mater. Sci. Eng. 2016, 123. [Google Scholar] [CrossRef]
- Piétrement, O.; Troyon, M. General equations describing elastic indentation depth and normal contact stiffness versus load. J. Colloid Interfaces Sci. 2000, 226, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Villarrubia, J.S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand Technol. 1997, 102, 425–454. [Google Scholar] [CrossRef] [PubMed]
Treatment Regime | 1 keV 2 × 1016 ions/cm2 | 1 keV 2 × 1017 ions/cm2 | 3 keV 2 × 1017 ions/cm2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Fatigue strain, % | 10 | 20 | 40 | 10 | 20 | 40 | 10 | 20 | 40 |
Open cracks | + | + | + | - | - | + | - | + | + |
Closed cracks | - | + | + | + | + | + | + | + | + |
Overlapping of crack edges | - | + | + | + | + | - | + | + | + |
Clots of matrix | - | + | + | - | + | + | + | + | + |
Fracture of folds | + | + | + | - | + | + | - | + | + |
In plane fracture of the coating | - | - | + | - | - | - | - | - | - |
Width of cracks, μm | 0.67 | 0.96 | 1.61 | 0.42 | 0.75 | 1.2 | 0.9 | 2.9 | 4.5 |
Depth of cracks, μm | 0.17 | 0.155 | 0.185 | 0.07 | 0.05 | 0.12 | 0.26 | 0.66 | 0.50 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozov, I.A.; Mamaev, A.S.; Bannikov, M.V.; Beliaev, A.Y.; Osorgina, I.V. The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading. Coatings 2018, 8, 75. https://doi.org/10.3390/coatings8020075
Morozov IA, Mamaev AS, Bannikov MV, Beliaev AY, Osorgina IV. The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading. Coatings. 2018; 8(2):75. https://doi.org/10.3390/coatings8020075
Chicago/Turabian StyleMorozov, Ilya A., Alexander S. Mamaev, Mikhail V. Bannikov, Anton Yu. Beliaev, and Irina V. Osorgina. 2018. "The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading" Coatings 8, no. 2: 75. https://doi.org/10.3390/coatings8020075
APA StyleMorozov, I. A., Mamaev, A. S., Bannikov, M. V., Beliaev, A. Y., & Osorgina, I. V. (2018). The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading. Coatings, 8(2), 75. https://doi.org/10.3390/coatings8020075