Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculum Preparation
2.2. Preparation of Activated Plastic Bags
2.3. Sample Preparation, Treatments, and Microbiological Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McLauchlin, J.; Mitchell, R.T.; Smerdon, W.J.; Jewell, K. Listeria monocytogenes and listeriosis: A review of hazard characterisation for use in microbiological risk assessment of foods. Int. J. Food Microbiol. 2004, 92, 15–33. [Google Scholar] [CrossRef]
- Gandhi, M.; Chikindas, M.L. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 2007, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 4634. [Google Scholar]
- Garner, D.; Kathariou, S. Fresh produce-associated listeriosis outbreaks, sources of concern, teachable moments, and insights. J. Food Prot. 2016, 79, 337–344. [Google Scholar] [CrossRef] [PubMed]
- McCollum, J.T.; Cronquist, A.B.; Silk, B.J.; Jackson, K.A.; O’Connor, K.A.; Cosgrove, S.; Gossack, J.P.; Parachini, S.S.; Jain, N.S.; Ettestad, P.; et al. Multistate outbreak of listeriosis associated with cantaloupe. N. Engl. J. Med. 2013, 369, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, A.; Abriouel, H.; López, R.L.; Ben Omar, N. Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 2007, 120, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015, 6, 611. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, J. Food packaging interactions influencing quality and safety. Food Addit. Contam. 1997, 14, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H. Antimicrobial food packaging. Food Technol. 2000, 54, 56–65. [Google Scholar]
- Leistner, L.; Gorris, L.G.M. Food preservation by hurdle technology. Trends Food Sci. Technol. 1995, 6, 2–46. [Google Scholar] [CrossRef]
- Mauriello, G.; de Luca, E.; la Storia, A.; Villani, F.; Ercoloni, D. Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett. Appl. Microbiol. 2005, 41, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Neetoo, H.; Ye, M.; Chen, H.Q. Effectiveness and stability of plastic films coated with nisin for inhibition of Listeria monocytogenes. J. Food Prot. 2007, 70, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Silva, P.; Soares, N.F.F.; Nobrega, J.E.; Junior, M.A.W.; Barbosa, K.B.F.; Volp, A.C.P.; Zerdas, E.R.M.A.; Würlitzer, N.J. Antimicrobial efficiency of film incorporated with pediocin (ALTA 2351) on preservation of sliced ham. Food Control 2009, 20, 85–89. [Google Scholar] [CrossRef]
- Natrajan, N.; Sheldon, B.W. Efficacy of nisin coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin. J. Food. Prot. 2000, 63, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Perez Espitia, P.J.; Soares, N.F.F.; Coimbra, J.S.R.; Andrade, N.J.; Cruz, R.S.; Medeiros, E.A.A. Bioactive peptides: Synthesis, properties and applications in the packaging and preservation of food. Compr. Rev. Food Sci. Food Saf. 2012, 11, 187–204. [Google Scholar] [CrossRef]
- Viedma, P.M.; Ercolini, D.; Ferrocino, I.; Abriouel, H.; Omar, N.B.; Lopez, R.L.; Galvez, A. Effect of polyethylene film activated with enterocin EJ97 in combination with EDTA against Bacillus coagulans. LWT Food Sci. Technol. 2010, 43, 514–518. [Google Scholar] [CrossRef]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cerisuelo, J.P.; Bermudez, J.M.; Aucejo, S.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Describing and modeling the release of an antimicrobial agent from an active PP/EVOH/PP package for salmon. J. Food Eng. 2013, 116, 352–361. [Google Scholar] [CrossRef]
- Otero, V.; Becerril, R.; Santos, J.A.; Rodríguez-Calleja, J.M.; Nerin, C.; García-López, M.L. Evaluation of two antimicrobial packaging films against Escherichia coli O157:H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control 2014, 42, 296–302. [Google Scholar] [CrossRef]
- Muriel-Galet, V.; Cerisuelo, J.P.; López-Carballo, G.; Lara, M.; Gavara, R.; Hernández-Muñoz, P. Development of antimicrobial films for microbiological control of packaged salad. Int. J. Food Microbiol. 2012, 157, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Muriel-Galet, V.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Antimicrobial food packaging film based on the release of f LAE from EVOH. Int. J. Food Microbiol. 2012, 157, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M.C. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 2012, 109, 513–519. [Google Scholar] [CrossRef]
- Theinsathid, P.; Visessanguan, W.; Kruenate, J.; Kingcha, Y.; Keeratipibul, S. Antimicrobial activity of lauric arginate-coated polylactic acid films against Listeria monocytogenes and Salmonella typhimurium on cooked sliced ham. J. Food Sci. 2012, 77, M142–M149. [Google Scholar] [CrossRef] [PubMed]
- Grande-Burgos, M.J.; Pérez-Pulido, R.; López-Aguayo, M.C.; Gálvez, A.; Lucas, R. The cyclic antibacterial peptide enterocin AS-48: Isolation, mode of action, and possible food applications. Int. J. Mol. Sci. 2014, 15, 22706–22727. [Google Scholar] [CrossRef] [PubMed]
- Molinos, A.C.; Abriouel, H.; López, R.L.; Omar, N.B.; Valdivia, A.; Gálvez, A. Enhanced bactericidal activity of enterocin AS-48 in combination with essential oils, natural bioactive compounds and chemical preservatives against Listeria monocytogenes in ready-to-eat salad. Food Chem. Toxicol. 2009, 47, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Ananou, S.; Garriga, M.; Jofré, A.; Aymerich, T.; Gálvez, A.; Maqueda, M.; Martínez-Bueno, M.; Valdivia, E. Combined effect of enterocin AS-48 and high hydrostatic pressure to control food-borne pathogens inoculated in low acid fermented sausages. Meat Sci. 2010, 84, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Abriouel, H.; Valdivia, E.; Martínez-Bueno, M.; Maqueda, M.; Gálvez, A. A simple method for semi-preparative-scale production and recovery of enterocin AS-48 derived from Enterococcus faecalis subsp. liquefaciens A-48-32. J. Microbiol. Methods 2003, 55, 599–605. [Google Scholar] [CrossRef]
- Del Árbol, J.T.; Pulido, R.P.; Grande, M.J.; Gálvez, A.; Lucas, R. Survival and high-hydrostatic pressure inactivation of foodborne pathogens in salmorejo, a traditional ready-to-eat food. J. Food Sci. 2015, 80, M2517–M2521. [Google Scholar] [CrossRef] [PubMed]
- Baños, A.; García-López, J.D.; Núñez, C.; Martínez-Bueno, M.; Maqueda, M.; Valdivia, E. Biocontrol of Listeria monocytogenes in fish by enterocin AS-48 and Listeria lytic bacteriophage P100. LWT Food Sci. Technol. 2016, 66, 672–677. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from fresh and smoked fish in Poland. Food Microbiol. 2017, 64, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garret, E.H.; Busta, F.F. Outbreaks associated with fresh produce: Incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 78–141. [Google Scholar] [CrossRef]
- Penteado, A.L.; Leitao, M.F.F. Growth of Listeria monocytogenes in melon, watermelon and papaya pulps. Int. J. Food Microbiol. 2004, 92, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Molinos, A.C.; Abriouel, H.; Omar, N.B.; Valdivia, E.; Lucas, R.; Maqueda, M.; Cañamero, M.M.; Gálvez, A. Effect of immersion solutions containing enterocin AS-48 on Listeria monocytogenes in vegetable foods. Appl. Environ. Microbiol. 2005, 71, 7781–7787. [Google Scholar] [CrossRef] [PubMed]
- Ukuku, D.O.; Fett, W. Behavior of Listeria monocytogenes inoculated on cantaloupe surfaces and efficacy of washing treatments to reduce transfer from rind to fresh-cut pieces. J. Food Prot. 2002, 65, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Molinos, A.C.; Abriouel, H.; Omar, N.B.; Lucas, R.; Valdivia, E.; Gálvez, A. Inactivation of Listeria monocytogenes in raw fruits by enterocin AS-48. J. Food Prot. 2008, 71, 2460–2467. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R.; Brackett, R.E. Behavior of Listeria monocytogenes inoculated into raw tomatoes and processed tomato products. Appl. Environ. Microbiol. 1991, 57, 1367–1371. [Google Scholar] [PubMed]
- Pao, S.; Brown, G.E.; Schneider, K.R. Challenge studies with selected pathogenic bacteria on freshly peeled Hamlin orange. J. Food Sci. 1998, 63, 359–362. [Google Scholar] [CrossRef]
- Conway, W.S.; Leverentz, B.; Saftner, R.A.; Janisiewicz, W.J.; Sams, C.E.; Leblanc, E. Survival and growth of Listeria monocytogenes on fresh-cut apple slices and its interaction with Glomerella cingulata and Penicillium expansum. Plant Dis. 2000, 84, 177–181. [Google Scholar] [CrossRef]
- Alegre, I.; Abadias, M.; Anguera, M.; Oliveira, M.; Viñas, I. Factors affecting growth of foodborne pathogens on minimally processed apples. Food Microbiol. 2010, 27, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Del Carmen López Aguayo, M.; Burgos, M.J.G.; Pulido, R.P.; Gálvez, A.; López, R.L. Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. Innov. Food Sci. Emerg. Technol. 2016, 35, 177–183. [Google Scholar] [CrossRef]
- Alpas, H.; Kalchayanand, N.; Bozoglu, F.; Ray, B. Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int. J. Food Microbiol. 2000, 60, 33–42. [Google Scholar] [CrossRef]
- Stewart, C.M.; Jewett, F.F.; Dunne, C.P.; Hoover, G.H. Effect of concurrent high hydrostatic pressure, acidity and heat on the injury and destruction of Listeria monocytogenes. J. Food Saf. 1997, 17, 23–36. [Google Scholar] [CrossRef]
- Mendoza, F.; Maqueda, M.; Gálvez, A.; Martínez-Bueno, M.; Valdivia, E. Antilisterial activity of peptide AS-48 and study of changes induced in the cell envelope properties of an AS-48-adapted strain of Listeria monocytogenes. Appl. Environ. Microbiol. 1999, 65, 618–625. [Google Scholar] [PubMed]
- Ananou, S.; Baños, A.; Maqueda, M.; Martínez-Bueno, M.; Gálvez, A.; Valdivia, E. Effect of combined physico-chemical treatments based on enterocin AS-48 on the control of Listeria monocytogenes and Staphylococcus aureus in a model cooked ham. Food Control 2010, 21, 478–486. [Google Scholar] [CrossRef]
Treatment | Storage Time (Days) | ||||
---|---|---|---|---|---|
0 | 3 | 5 | 7 | 10 | |
Control | 5.30 ± 0.09 | 4.93 ± 0.08 | 6.03 ± 0.22 | 6.36 ± 0.12 | 7.02 ± 0.21 |
Activated film (AF) | 3.54 ± 0.15 | 3.88 ± 0.21 | 3.36 ± 0.22 | 4.06 ± 0.46 | 6.85 ± 0.38 |
HHP | 3.47 ± 0.16 | 4.75 ± 0.17 | 6.06 ± 0.39 | 6.56 ± 0.18 | 5.20 ± 0.42 |
AF-HHP | 3.42 ± 0.21 | 3.47 ± 0.31 | 3.25 ± 0.25 | 3.41 ± 0.29 | 4.49 ± 0.22 |
Treatment | Storage Time (Days) | ||||
---|---|---|---|---|---|
0 | 3 | 5 | 7 | 10 | |
Control | 5.49 ± 0.08 | 4.77 ± 0.12 | 4.38 ± 0.11 | 4.60 ± 0.14 | 3.27 ± 0.29 |
Activated film (AF) | 3.69 ± 0.12 | 2.69 ± 0.14 | <1.0 | <1.0 | <1.0 |
HHP | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
AF-HHP | <1.0 | <1.0 | <1.0 | <1.0 | <1.0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega Blázquez, I.; Grande Burgos, M.J.; Pérez-Pulido, R.; Gálvez, A.; Lucas, R. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment. Coatings 2017, 7, 204. https://doi.org/10.3390/coatings7110204
Ortega Blázquez I, Grande Burgos MJ, Pérez-Pulido R, Gálvez A, Lucas R. Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment. Coatings. 2017; 7(11):204. https://doi.org/10.3390/coatings7110204
Chicago/Turabian StyleOrtega Blázquez, Irene, María José Grande Burgos, Rubén Pérez-Pulido, Antonio Gálvez, and Rosario Lucas. 2017. "Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment" Coatings 7, no. 11: 204. https://doi.org/10.3390/coatings7110204
APA StyleOrtega Blázquez, I., Grande Burgos, M. J., Pérez-Pulido, R., Gálvez, A., & Lucas, R. (2017). Inactivation of Listeria in Foods Packed in Films Activated with Enterocin AS-48 plus Thymol Singly or in Combination with High-Hydrostatic Pressure Treatment. Coatings, 7(11), 204. https://doi.org/10.3390/coatings7110204