Oligocarbonate Diols as Modifiers of Polyurethane Coatings
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Adhesion to Wood Substrate
3.2. Hardness of the Coatings
3.3. The Effect of UV Aging on Color and Gloss of Coatings
3.4. Abrasion Resistance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OCD | Oligocarbonate diol |
| PUR | Polyurethane |
References
- Hepburn, C. Polyurethane Elastomers, 2nd ed.; Elsevier Applied Science: New York, NY, USA, 2012; pp. 19–27. [Google Scholar]
- Sonnenschein, M.F. Polyurethanes: Science, Technology, Markets, and Trends; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 11–58. [Google Scholar]
- Le Ma, L.; Song, L.; Wang, H.; Fan, L.; Liu, B. Synthesis and characterization of poly(propylene carbonate) glycol-based waterborne polyurethane with high solid content. Prog. Org. Coat. 2018, 117, 10–18. [Google Scholar]
- Tan, J.; Li, F.; Chen, H.; Yan, H.; Zhou, Y. Amine resin-crosslinked waterborne polyurethane with excellent mechanical properties and water resistance for automotive middle coating. Prog. Org. Coat. 2025, 200, 109071. [Google Scholar] [CrossRef]
- García-Pacios, V.; Colera, M.; Iwata, Y.; Martín-Martínez, J.M. Incidence of the polyol nature in waterborne polyurethane dispersions on their performance as coatings on stainless steel. Prog. Org. Coat. 2013, 76, 1726–1729. [Google Scholar] [CrossRef]
- Rivero, G.; Nguyen, L.T.T.; Hillewaere, X.K.D.; Du Prez, F.E. One-pot thermo-remendable shape memory polyurethanes. Macromolecules 2014, 47, 2010–2018. [Google Scholar] [CrossRef]
- Yilgör, I.; Yilgör, E.; Wilkes, G.L. Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer 2015, 58, A1–A36. [Google Scholar] [CrossRef]
- Jofre-Reche, J.A.; Fuensanta, M.; Yáñez-Pacios, A.; Colera, M.; Rodriguez, F.; Iglesias, I.; Costa, V.; Martín-Martínez, J.M. Improvement in adhesion, abrasion resistance, and aging of polyurethane coatings prepared with polycarbonate diol for internal pipelines. J. Mater. Civ. Eng. 2017, 29, 06017009. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Yeung, A.D. A concise review of computational studies of the carbon dioxide–epoxide copolymerization reactions. Polym. Chem. 2014, 5, 3949–3962. [Google Scholar] [CrossRef]
- Langanke, J.; Wolf, A.; Hofmann, J.; Böhm, K.; Subhani, M.A.; Müller, T.E.; Leitner, W. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870. [Google Scholar] [CrossRef]
- Blattmann, H.; Fleischer, M.; Bähr, M.; Mülhaupt, R. Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide. Macromol. Rapid Commun. 2014, 14, 1238–11254. [Google Scholar] [CrossRef]
- Wicks, Z.W., Jr.; Jones, F.N.; Pappas, S.P.; Wicks, D.A. Organic Coatings: Science and Technology, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2007; pp. 515–521. [Google Scholar]
- Monica, F.D.; Brandolese, A.; Di Carmine, G.; Selva, M.; Fiorani, G.; Izzo, L. En Route Toward Sustainable Polycarbonates via Large Cyclic Carbonates. ChemSusChem 2025, 18, e202500030. [Google Scholar] [CrossRef] [PubMed]
- von der Assen, N.; Jung, J.; Bardow, A. Life-cycle assessment of carbon dioxide capture and utilization: Avoiding the pitfalls. Energy Environ. Sci. 2013, 6, 2721–2734. [Google Scholar] [CrossRef]
- Zhang, X.; Fevre, M.; Jones, G.O.; Waymouth, R.M. Catalysis as an Enabling Science for Sustainable Polymers. Chem. Rev. 2018, 118, 839–885. [Google Scholar] [CrossRef]
- Darensbourg, D.J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides. Chem. Rev. 2007, 107, 2388–2410. [Google Scholar] [CrossRef] [PubMed]
- Stößer, T.; Li, C.; Unruangsri, J.; Saini, P.K.; Sablong, R.J.; Meier, M.A.R.; Williams, C.K.; Koning, C.E. Bio-derived polymers for coating applications: Comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polym. Chem. 2017, 8, 6099–6105. [Google Scholar] [CrossRef]
- Alagi, P.; Ghorpade, R.; Choi, Y.J.; Patil, U.; Kim, I.; Baik, J.H.; Hong, S.C. Carbon Dioxide-Based Polyols as Sustainable Feedstock of Thermoplastic Polyurethane for Corrosion-Resistant Metal Coating. ACS Sustain. Chem. Eng. 2017, 5, 3871–3881. [Google Scholar] [CrossRef]
- Mudri, N.H.; Abdullah, L.C.; Aung, M.M.; Salleh, M.Z.; Awang Biak, D.R.; Rayung, M. Comparative Study of Aromatic and Cycloaliphatic Isocyanate Effects on Physico-Chemical Properties of Bio-Based Polyurethane Acrylate Coatings. Polymers 2020, 12, 1494. [Google Scholar] [CrossRef]
- Luo, Q.; Wen, X.; Xu, R.; Liu, Z.; Xiang, H.; Li, Z.; Liu, X. Preparation and Properties of Novel Modified Waterborne Polyurethane Acrylate. Coatings 2022, 12, 1135. [Google Scholar] [CrossRef]
- Mamiński, M.Ł.; Parzuchowski, P.G.; Wołosz, D.; Zimny, A. Synthesis and Structural Characterization of Oligo(carbonate diol)s and Oligo(urethane-carbonate diol)s via a Transesterification-Polycondensation Route. Materials 2026, 19, 434. [Google Scholar] [CrossRef]
- Prasad, C.; Choi, S.M.; Govinda, V.; Sangaraju, S.; Choi, H.Y.; Shin, E.J. Kinetic Study of Different Tin-Free Catalysts for an Efficient Synthesis of Bio-Based Thermoplastic Polyurethanes. J. Polym. Sci. 2025, 63, 2422–2439. [Google Scholar] [CrossRef]
- He, H.; Shao, Z.; Hu, S.; Lu, Y.; Li, F. Comparative study on curing kinetics of MDI-based polyurethanes with different chain length diol curing agents. Polymer 2024, 290, 126541. [Google Scholar] [CrossRef]
- Paez-Amieva, Y.; Martín-Martínez, J.M. Understanding the Interactions between Soft Segments in Polyurethanes: Structural Synergies in Blends of Polyester and Polycarbonate Diol Polyols. Polymers 2023, 15, 4494. [Google Scholar] [CrossRef]
- Yaseen, A.; Umair, M.; Rehan, Z.A.; Alosaimi, E.H. Synthesis of catalyzed polyurethane films using varying content of isocyanates, glycols, and chain extenders. Results Chem. 2024, 7, 101357. [Google Scholar] [CrossRef]
- ASTM E1899-16; Standard Test Method for Hydroxyl Groups Using Reaction with p-Toluenesulfonyl Isocyanate (TSI) and Potentiometric Titration with Tetrabutylammonium Hydroxide. ASTM International: West Conshohocken, PA, USA, 2016.
- ISO 4624:2016; Paints and Varnishes—Pull-Off Test for Adhesion. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 2409:2013; Paints and Varnishes—Cross-Cut Test. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 1522:2017; Paints and Varnishes—Pendulum Damping Test. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 16474-3:2013; Paints and Varnishes—Exposure of Coatings to Artificial Weathering—Part 3: Fluorescent UV Lamps. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 2813:2014; Paints and Varnishes—Determination of Gloss Value at 20°, 60° and 85°. International Organization for Standardization: Geneva, Switzerland, 2014.
- EN 722-3:2003; Paints and Varnishes—Determination of Color—Part 3: Calculation of Color Differences. European Committee for Standardization (CEN): Brussels, Belgium, 2003.
- ISO 7784-1:2013; Paints and Varnishes—Determination of Resistance to Abrasion. Part 1: Method with Abrasive-Paper Covered Wheels and Rotating Test Specimen. International Organization for Standardization: Geneva, Switzerland, 2013.
- Mazurek, M.; Parzuchowski, P.G.; Rokicki, G. Propylene carbonate as a source of carbonate units in the synthesis of elastomeric poly(carbonate-urethane)s and poly(ester-carbonate-urethane)s. J. App. Polym. Sci. 2014, 131, 39764. [Google Scholar] [CrossRef]
- Anitha, S.; Vijayalakshmi, K.P.; Unnikrishnan, G.; Santhosh Kumar, K.S.S. CO2 derived hydrogen bonding spacer: Enhanced toughness, transparency, elongation and non-covalent interactions in epoxy-hydroxyurethane networks. J. Mater. Chem. A 2017, 5, 24299–24313. [Google Scholar] [CrossRef]
- Hwang, H.-D.; Park, C.-H.; Moon, J.-I.; Kim, H.-J.; Masubuchi, T. UV-curing behavior and physical properties of waterborne UV-curable polycarbonate-based polyurethane dispersion. Prog. Org. Coat. 2011, 72, 663–675. [Google Scholar] [CrossRef]
- Pelit, H.; Koc, E.; Cakicier, N. Adhesion Strength and Pendulum Hardness of Some Coatings in Wood Heat-treated by Different Methods. BioResources 2023, 18, 7353–7366. [Google Scholar] [CrossRef]
- Sauerbier, P.; Köhler, R.; Renner, G.; Militz, H. Surface activation of polylactic acid-based wood-plastic composite by atmospheric pressure plasma treatment. Materials 2020, 13, 4673. [Google Scholar] [CrossRef]
- Mamiński, M.Ł.; Novák, I.; Mičušík, M.; Małolepszy, A.; Toczyłowska-Mamińska, R. Discharge Plasma Treatment as an Efficient Tool for Improved Poly(lactide) Adhesive–Wood Interactions. Materials 2021, 14, 3672. [Google Scholar] [CrossRef]
- Aykan, R.; Kesik, H.I. Effect of Hygiene and Nano-Color Pigment Modification on Hardness, Glossiness, and Adhesion Strength of Some Surface Coating Materials. Coatings 2025, 15, 1334. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, N.; Xu, Y. Effects of Different Polyols with Functions on the Properties of Polyester Polyol-Based Polyurethane Coatings. Coatings 2025, 15, 61. [Google Scholar] [CrossRef]
- Panjan, P.; Miletić, A.; Drnovšek, A.; Terek, P.; Čekada, M.; Kovačević, L.; Panjan, M. Cracking Resistance of Selected PVD Hard Coatings. Coatings 2024, 14, 1452. [Google Scholar] [CrossRef]
- Puszka, A.; Sikora, J.W.; Nurzyńska, A. Influence of the Type of Soft Segment on the Selected Properties of Polyurethane Materials for Biomedical Applications. Materials 2024, 17, 840. [Google Scholar] [CrossRef]
- Li, D.; Yu, L.; Lu, Z.; Kang, H.; Li, L.; Zhao, S.; Shi, N.; You, S. Synthesis, Structure, Properties, and Applications of Fluorinated Polyurethane. Polymers 2024, 16, 959. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, X.; Qiao, Z.; Wang, S.; Jing, X. Pendulum hardness of polyurethane coatings during curing. Pigment. Resin Technol. 2014, 43, 271–276. [Google Scholar] [CrossRef]
- Slabejová, G.; Vidholdová, Z.; Šmidriaková, M. Effect of Two Different Ageing Exposures on the Colour Stability of Transparent Polyurethane Finishing. Polymers 2023, 15, 3313. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Duan, B.; Leng, G.; Liu, J.; Zhang, T.; Lu, Z.; Wang, S.; Qu, J. Preparation of Yellowing-Resistant Waterborne Polyurethane Modified with Disulfide Bonds. Molecules 2024, 29, 2099. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Nachman, M. The Abrasive Wear Resistance of the Segmented Linear Polyurethane Elastomers Based on a Variety of Polyols as Soft Segments. Polymers 2017, 9, 705. [Google Scholar] [CrossRef] [PubMed]
- Nachman, M.; Kwiatkowski, K. The effect of thermal annealing on the abrasion resistance of a segmented block copolymer urethane elastomers. Wear 2013, 306, 113–118. [Google Scholar] [CrossRef]
- Sokolska, J.; Ptak, A. Abrasive and Erosive Wear Behavior of Elastomeric Polyurethane Coatings: Effect of Grain Size. Coatings 2024, 14, 1611. [Google Scholar] [CrossRef]
- Ding, C.; Xing, Z.; Wang, Z.; Qin, Z.; Wang, J.; Zhao, X.; Yang, X. The comprehensive effect of tensile strength and modulus on abrasive wear performance for polyurethanes. Tribol. Int. 2022, 169, 107459. [Google Scholar] [CrossRef]



| OCD | LOH [mgKOH/g] | m.w. [g/mol] | Structure Type |
|---|---|---|---|
| 01 | 131 | 860 | cycloaliphatic |
| 02 | 114 | 980 | cycloaliphatic |
| 03 | 35 | 4000 | aliphatic |
| 04 | 71 | 1600 | aliphatic |
| 05 | 62 | 1800 | aromatic |
| 06 | 38 | 3000 | aromatic |
| OCD | MPa | Delamination Locus | Cross-Cut Class Acc. ISO 2409 |
|---|---|---|---|
| 00 * | 4.13 ± 0.48 | 50% -/Y; 50% Y/Z | II |
| 01 | 2.73 ± 0.30 | 50% -/Y; 50% Y/Z | I |
| 02 | 3.31 ± 0.13 | 80% -/Y; 20% Y/Z | II |
| 03 | 4.58 ± 0.36 | 60% -/Y; 40% Y/Z | I |
| 04 | 4.33 ± 0.23 | 100% -/Y | I |
| 05 | 5.38 ± 0.22 | 90% -/Y; 10% Y/Z | I |
| 06 | 4.90 ± 0.26 | 100% -/Y | I |
| Before UV Aging | After UV Aging | ΔE | Before UV Aging | After UV Aging | ΔGU | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| OCD | L | a | b | L | a | b | GU | |||
| 00 * | 64.77 ± 0.70 | 12.62 ± 0.22 | 25.21 ± 0.47 | 61.06 ± 0.96 | 14.05 ± 0.21 | 26.12 ± 0.37 | 4.08 | 73.9 ± 1.06 | 69.9 ± 2.04 | 4.0 |
| 01 | 70.61 ± 0.75 | 9.83 ± 0.15 | 25.10 ± 0.33 | 66.82 ± 1.04 | 11.29 ± 0.30 | 26.48 ± 0.42 | 4.29 | 99.5 ± 1.17 | 98.5 ± 1.80 | 1.0 |
| 02 | 67.03 ± 0.67 | 10.57 ± 0.11 | 25.71 ± 0.36 | 64.73 ± 0.77 | 11.41 ± 0.31 | 26.71 ± 0.19 | 2.64 | 84.9 ± 1.55 | 85.3 ± 1.33 | 0.4 |
| 03 | 69.79 ± 0.70 | 9.52 ± 0.10 | 23.70 ± 0.40 | 65.62 ± 0.74 | 10.86 ± 0.37 | 24.77 ± 0.85 | 4.5 | 81.5 ± 2.11 | 84.8 ± 2.60 | 3.3 |
| 04 | 70.31 ± 0.74 | 9.79 ± 0.13 | 24.11 ± 0.37 | 66.54 ± 0.97 | 11.63 ± 0.25 | 26.72 ± 0.64 | 4.94 | 81.6 ± 1.74 | 83.3 ± 1.92 | 1.7 |
| 05 | 69.08 ± 0,85 | 10.46 ± 0.18 | 24.35 ± 0.31 | 64.24 ± 0.83 | 12.87 ± 0.21 | 26.23 ± 0.44 | 5.72 | 84.4 ± 1.49 | 76.7 ± 2.07 | 7.7 |
| 06 | 71.77 ± 0.64 | 9.72 ± 0.23 | 24.59 ± 0.33 | 66.35 ± 0.80 | 12.16 ± 0.41 | 26.71 ± 0.55 | 6.31 | 73.2 ± 1.23 | 73.5 ± 1.88 | 0.3 |
| beech | 76.08 ± 1.11 | 6.73 ± 0.70 | 17.88 ± 0.67 | 72.05 ± 1.14 | 7.78 ± 0.62 | 23.02 ± 0.61 | 6.62 | — | — | — |
| OCD | Weight Loss [g] |
|---|---|
| 00 * | 0.021 ± 0.003 |
| 01 | 0.007 ± 0.001 |
| 02 | 0.012 ± 0.002 |
| 03 | 0.006 ± 0.002 |
| 04 | 0.007 ± 0.002 |
| 05 | 0.012 ± 0.002 |
| 06 | 0.011 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mamiński, M.Ł.; Parzuchowski, P.G.; Mazurek-Budzyńska, M. Oligocarbonate Diols as Modifiers of Polyurethane Coatings. Coatings 2026, 16, 155. https://doi.org/10.3390/coatings16020155
Mamiński MŁ, Parzuchowski PG, Mazurek-Budzyńska M. Oligocarbonate Diols as Modifiers of Polyurethane Coatings. Coatings. 2026; 16(2):155. https://doi.org/10.3390/coatings16020155
Chicago/Turabian StyleMamiński, Mariusz Ł., Paweł G. Parzuchowski, and Magdalena Mazurek-Budzyńska. 2026. "Oligocarbonate Diols as Modifiers of Polyurethane Coatings" Coatings 16, no. 2: 155. https://doi.org/10.3390/coatings16020155
APA StyleMamiński, M. Ł., Parzuchowski, P. G., & Mazurek-Budzyńska, M. (2026). Oligocarbonate Diols as Modifiers of Polyurethane Coatings. Coatings, 16(2), 155. https://doi.org/10.3390/coatings16020155
