Progress and Challenges of Bandgap Engineering in One-Dimensional Semiconductor Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Yang, Z.Y.; Albrow, T.; Cui, H.X.; Alexander, W.J.; Gu, F.X.; Wang, X.M.; Wu, T.C.; Zhu, M.H.; Williams, C.; Wang, P.; et al. Single-nanowire spectrometers. Science 2019, 365, 101. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.; Kang, J.; Ning, C.; Yang, P. Nanowires for photonics. Chem. Rev. 2019, 119, 9153. [Google Scholar] [CrossRef]
- Noreen, S.; Aljaafreh, M.J.; Sumrra, S.H. Modeling Enthalpy of Formation with Machine Learning for Structural Evaluation and Thermodynamic Stability of Organic Semiconductors. Coatings 2025, 15, 758. [Google Scholar] [CrossRef]
- Lu, X.; Wu, H.; Xu, J.; Chen, J.; Huang, Y.; Li, H.; Song, J.; Huang, R. Influence of Ce3+ Doping on Photoluminescence Properties and Stability of Cs4SnBr6 Zero-Dimensional Perovskite. Coatings 2024, 14, 945. [Google Scholar] [CrossRef]
- Li, X.; Shen, X.; Lv, Q.; Guo, P.; Xiao, L. Metal Halide Perovskites: Promising Materials for Light-Emitting Diodes. Coatings 2024, 14, 83. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, K.; Li, K.; Ju, H.; Xue, Q.; Qi, X.; Jiang, J. The Construction of an α-F2O3/Tubular g-C3N4 Z-Scheme Heterojunction Catalyst for the Efficient Photocatalytic Degradation of Tetracycline. Coatings 2023, 13, 1909. [Google Scholar] [CrossRef]
- Sun, C.; Lou, Z.; Ai, X.; Xue, Z.; Zhang, H.; Chen, G. Effects of Nitrogen Doping on Pulling Rate Range of Defect-Free Crystal in CZ Silicon. Coatings 2023, 13, 1637. [Google Scholar] [CrossRef]
- Ning, C.; Dou, L.; Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070. [Google Scholar] [CrossRef]
- Perea, D.E.; Li, N.; Dickerson, R.M.; Misra, A.; Picraux, S.T. Controlling heterojunction abruptness in VLS-grown semiconductor nanowires via in situ catalyst alloying. Nano Lett. 2011, 11, 3117. [Google Scholar] [CrossRef]
- Kim, C.; Lee, H.; Cho, Y.; Yang, J.; Lee, R.; Lee, J.; Jo, M. On-nanowire band-graded Si:Ge photodetectors. Adv. Mater. 2011, 23, 1025. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.W.; Duan, X.D.; Duan, X.F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129. [Google Scholar] [CrossRef]
- Ren, D.; Ahtapodov, L.; Nilsen, J.; Yang, J.; Gustafsson, A.; Huh, J.; Conibeer, G.; Helvoort, A.; Fimland, B.; Weman, H. Single-mode near-infrared lasing in a GaAsSb-based nanowire superlattice at room temperature. Nano Lett. 2018, 18, 2304. [Google Scholar] [CrossRef] [PubMed]
- Krogstrup, P.; Yamasaki, J.; Sørensen, C.; Johnson, E.; Wagner, J.; Pennington, R.; Aagesen, M. Junctions in axial III−V heterostructure nanowires obtained via an interchange of group III elements. Nano Lett. 2009, 9, 3689. [Google Scholar] [CrossRef]
- Clark, T.; Nimmatoori, P.; Lew, K.; Pan, L.; Redwing, J.; Dickey, E. Diameter dependent growth rate and interfacial abruptness in vapor–liquid–solid Si/Si1−xGex heterostructure nanowires. Nano Lett. 2008, 8, 1246. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fan, R.; Yang, P. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2002, 2, 83. [Google Scholar] [CrossRef]
- Gudiksen, M.; Lauhon, L.; Wang, J.; Smith, D.; Lieber, C. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617. [Google Scholar] [CrossRef]
- Qian, F.; Li, Y.; Gradečak, S.; Park, H.; Dong, Y.; Ding, Y.; Lieber, C. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008, 7, 701. [Google Scholar] [CrossRef]
- Dai, G.; Zou, B.; Wang, Z. Preparation and periodic emission of superlattice CdS/CdS: SnS2 microwires. J. Am. Chem. Soc. 2010, 132, 12174. [Google Scholar] [CrossRef]
- Dou, L.; Lai, M.; Kley, C.; Yang, Y.; Bischak, C.; Zhang, D.; Eaton, S.; Ginsberg, N.; Yang, P. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl. Acad. Sci. USA 2017, 114, 7216. [Google Scholar] [CrossRef]
- Guo, P.; Liu, D.; Shen, X.; Lv, Q.; Wu, Y.; Yang, Q.; Yu, K. On-wire axial perovskite heterostructures for monolithic dual-wavelength laser. Nano Energy 2021, 92, 106778. [Google Scholar] [CrossRef]
- Fan, F.; Turkdogan, S.; Liu, Z.; Shelhammer, D.; Ning, C. A monolithic white laser. Nat. Nanotechnol. 2015, 10, 796. [Google Scholar] [CrossRef]
- Gu, F.; Yang, Z.; Yu, H.; Xu, J.; Wang, P.; Tong, L.; Pan, A. Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 2011, 133, 2037. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, J.; Wang, P.; Zhuang, X.; Pan, A.; Tong, L. On-nanowire spatial bandgap design for white light emission. Nano Lett. 2011, 11, 5085. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Yang, Q.; Shen, X.; Lv, Q.; Hao, Y.; Xiao, L.; Ho, J.; Yu, K. Room-Temperature Broad-Wavelength-Tunable Single-Mode Lasing from Alloyed CdS1−xSex Nanotripods. ACS Nano 2022, 16, 12767. [Google Scholar] [CrossRef]
- Xu, Z.; Lv, Q.; Li, X.; Meng, Y.; Ho, J.; Guo, P. Composition-Tunable Bandgap Engineering of Horizontally Guided CdSxSe1−x Nanowalls for High-Performance Photodetectors. ACS Appl. Mater. Interfaces 2025, 17, 1962. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Wang, J.; Shen, X.; Lv, Q.; Li, X.; Xu, Z.; Han, S.; Bian, Y.; Meng, Y.; Yang, L.; et al. Bandgap engineering of halide perovskite nanoribbons for highperformance photodetection. Nano Res. 2025, 18, 94907347. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shen, X.; Guo, P. Progress and Challenges of Bandgap Engineering in One-Dimensional Semiconductor Materials. Coatings 2026, 16, 36. https://doi.org/10.3390/coatings16010036
Shen X, Guo P. Progress and Challenges of Bandgap Engineering in One-Dimensional Semiconductor Materials. Coatings. 2026; 16(1):36. https://doi.org/10.3390/coatings16010036
Chicago/Turabian StyleShen, Xia, and Pengfei Guo. 2026. "Progress and Challenges of Bandgap Engineering in One-Dimensional Semiconductor Materials" Coatings 16, no. 1: 36. https://doi.org/10.3390/coatings16010036
APA StyleShen, X., & Guo, P. (2026). Progress and Challenges of Bandgap Engineering in One-Dimensional Semiconductor Materials. Coatings, 16(1), 36. https://doi.org/10.3390/coatings16010036

