Surface Property Evolution of Pigmented Chinese Lacquer Coatings During Mercury Lamp-Induced Photoaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Coating Films
2.3. Artificial Light Aging Test
2.4. Evaluation of Coating Aging Performance
2.4.1. Appearance and Color Measurement
2.4.2. Surface Roughness and Gloss Measurement
2.4.3. Surface Chemical Analysis
2.4.4. Microscopic Morphology Observation
2.4.5. Statistical Analysis
3. Results
3.1. Color Changes of Chinese Lacquer Coatings During Mercury Lamp-Induced Photoaging
3.2. Variations in Gloss and Surface Roughness
3.3. Assessment of Surface Chemical Alterations via FTIR
3.4. Evaluation of Microstructural Changes Using SEM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.; Liu, H. Innovative application of the research on material properties of Chinese lacquer in the design of pile lacquer implement. In Cross-Cultural Design: User Experience of Products, Services, and Intelligent Environments; Rau, P.L., Ed.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12192. [Google Scholar]
- Lu, R.; Yoshida, T.; Miyakoshi, T. Oriental lacquer: A natural polymer. Polym. Rev. 2013, 53, 153–191. [Google Scholar] [CrossRef]
- Watanabe, H.; Fujimoto, A.; Takahara, A. Surface texturing of natural “urushi” thermosetting polymer thin films. Polym. J. 2014, 46, 216–219. [Google Scholar] [CrossRef]
- Zou, W.; Yeo, S.Y. Non-destructive prediction of the mixed mineral pigment content of ancient Chinese wall paintings based on multiple spectroscopic techniques. Appl. Spectrosc. 2024, 78, 702–713. [Google Scholar] [CrossRef]
- Vogl, O. My life with polymer science. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 804. [Google Scholar] [CrossRef]
- Bagherzadeh Kasiri, M.; Nemati Babaylou, A.; Karimi, H. Photo-oxidative stability of a series of red acrylic paints. Prog. Color Color. Coat. 2013, 7, 177–185. [Google Scholar]
- Han, J.; Webb, M.; Hao, X.; Khanjian, H.; Schilling, M.R. Surface appearance and morphology changes of Asian lacquer due to artificial aging: Impacts of traditional additives. J. Cult. Herit. 2023, 63, 249–262. [Google Scholar] [CrossRef]
- Xia, J.; Lin, J.; Xu, Y.; Chen, Q. On the UV-induced polymeric behavior of Chinese lacquer. ACS Appl. Mater. Interfaces 2011, 3, 482–489. [Google Scholar] [CrossRef]
- Han, J.; Schilling, M.R.; Mazurek, J.; Webb, M.; Hao, X.; Khanjian, H. Composition changes of water extracts from Asian lacquer surfaces during artificial aging and the influence of formulations. J. Cult. Herit. 2024, 66, 602–612. [Google Scholar] [CrossRef]
- Song, X.; Yang, Y.; Yang, R.; Shafi, M. Keeping watch on intangible cultural heritage: Live transmission and sustainable development of Chinese lacquer art. Sustainability 2019, 11, 3868. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, B.; Hu, Y. Comparison and research progress of protein detection technology for cultural relic materials. Coatings 2023, 13, 1319. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Lv, J. Comparative study on UV degradation of black Chinese lacquers with different additives. Materials 2023, 16, 5607. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Tao, L.; Ji, X.; Chen, M.; Wang, N.; Gan, H.; Zhong, Z.; Zhao, Y.; Yang, F.; et al. The origin and circulation of cinnabar in Neolithic Age of China: Evidence from sulfur and mercury isotope analysis. Archaeometry 2025, 1–13. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Chen, X.; Huang, Q.; Bian, Z.; Zhang, W.; Su, B.; Zhang, H. Mechanistic study on orpiment pigment discoloration induced by reactive oxygen species. Molecules 2025, 30, 3318. [Google Scholar] [CrossRef]
- Yamada, K.; Narita, C. Rapid and sustainable urushi coatings: Thermal curing kinetics and predictive modeling. Prog. Org. Coat. 2025, 208, 109498. [Google Scholar] [CrossRef]
- Lannuzzi, G.; Mattsson, B.; Rigdahl, M. Color changes due to thermal ageing and artificial weathering of pigmented and textured ABS. Polym. Eng. Sci. 2013, 53, 1687–1695. [Google Scholar] [CrossRef]
- Luo, M.R. Applying colour science in colour design. Opt. Laser Technol. 2006, 38, 392–398. [Google Scholar] [CrossRef]
- Liu, X.; Lv, M.; Liu, M.; Wu, Z.; Lv, J. Characterization and identification of lacquer films from the Qin and Han dynasties. BioResources 2019, 14, 9509–9517. [Google Scholar] [CrossRef]
- Maldonado, F.; Ciurlizza, A.; Radillo, R.; de León, E.P. Optimisation of the Colour Sequence in the Dyeing Process: Industrial Applications. Color. Technol. 2000, 116, 359–362. [Google Scholar] [CrossRef]
- Schanda, J. Colorimetry: Understanding the CIE System; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Spring, M.; Grout, R. The Blackening of Vermilion: An Analytical Study of the Process in Paintings. Natl. Gallery Tech. Bull. 2002, 23, 50–61. [Google Scholar]
- Eastaugh, N.; Walsh, V.; Chaplin, T.; Siddall, R. Pigment Compendium: A Dictionary of Historical Pigments; Routledge: Oxford, UK, 2007. [Google Scholar]
- Yang, X.F.; Li, J.; Croll, S.G.; Tallman, D.E.; Bierwagen, G.P. Degradation of Low Gloss Polyurethane Aircraft Coatings under UV and Prohesion Alternating Exposures. Polym. Degrad. Stab. 2003, 80, 51–58. [Google Scholar] [CrossRef]
- Wang, L.B.; Liu, H. Light stability of silk fabrics coated with Chinese lacquer. In Proceedings of the International Conference on Advanced Textile Materials & Manufacturing Technology, Hangzhou, China, 15–19 October 2008; pp. 63–66. [Google Scholar]
- Lambert, J.B.; Frye, J.S.; Carriveau, G.W. The Structure of Oriental Lacquer by Solid State Nuclear Magnetic Resonance Spectroscopy. Archaeometry 1991, 33, 87–93. [Google Scholar] [CrossRef]
- Chen, Y.; Bai, W.; Chen, J.; Chen, X.; Zhao, J.; Wei, F.; Jian, R.; Zheng, X.; Xu, Y. In-Situ Intercalation of Montmorillonite/Urushiol Titanium Polymer Nanocomposite for Anti-Corrosion and Anti-Aging of Epoxy Coatings. Prog. Org. Coat. 2022, 165, 106738. [Google Scholar] [CrossRef]
- Niimura, N.; Miyakoshi, T. Structural Study of Oriental Lacquer Films during the Hardening Process. Talanta 2006, 70, 146–152. [Google Scholar] [CrossRef]
- Le Hô, A.; Duhamel, C.; Daher, C.; Bellot-Gurlet, L.; Paris, C.; Regert, M.; Sablier, M.; André, G.; Desroches, J.; Dumas, P. Alteration of Asian lacquer: In-depth insight using a physico-chemical multiscale approach. Analyst 2013, 138, 5685–5696. [Google Scholar] [CrossRef] [PubMed]
- Pintus, V.; Baragona, A.J.; Wieland, K.; Schilling, M.; Miklin-Kniefacz, S.; Haisch, C.; Schreiner, M. Comprehensive Multi-Analytical Investigations on the Vietnamese lacquered Wall-Panel “The Return of the Hunters” by Jean Dunand. Sci. Rep. 2019, 9, 18837. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.Q.; Chen, H.; Wen, Z.Y. Integrated Multi-Scale Synchrotron Radiation-Technology Studies on Alpo4-Coating Modification Mechanismin Lithium-Rich Manganese-Based Cathode. Nucl. Sci. Tech. 2025, 36, 79. [Google Scholar] [CrossRef]
- Sitzia, F.; Moita, P.; Bottura-Scardina, S.; Lisci, C. Colour stability of light-sensitive minerals under UVA340 nm irradiation: Implications for the conservation of cultural heritage and museum display conditions. Minerals 2025, 15, 999. [Google Scholar] [CrossRef]
- Colomban, P.; Mancini, D. Lacquerware Pigment Identification with Fixed and Mobile Raman Microspectrometers: A Potential Technique to Differentiate Original/Fake Artworks. Arts 2013, 2, 111–123. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Weber, J.; Schreiner, M. Photodegradation Kinetics of Alkyd Paints: The Influence of Varying Amounts of Inorganic Pigments on the Stability of the Synthetic Binder. Front. Mater. 2020, 7, 600887. [Google Scholar] [CrossRef]
- Lattimer, R.P.; Vergne, M.J.; Hercules, D.M. A Developmental History of Polymer Mass Spectrometry. J. Chem. Educ. 2007, 84, 81. [Google Scholar] [CrossRef]
- Simoen, J.; De Meyer, S.; Vanmeert, F.; de Keyser, N.; Avranovich, E.; Van der Snickt, G.; Van Loon, A.; Keune, K.; Janssens, K. Combined micro- and macro-scale X-ray powder diffraction mapping of degraded orpiment paint in a 17th century still life painting by Martinus Nellius. Herit. Sci. 2019, 7, 83. [Google Scholar] [CrossRef]
- Tauson, V.L.; Sapozhnikov, A.N.; Lipko, S.V.; Mikhlin, Y.L.; Danilov, B.S.; Shendrik, R.Y.; Sofich, D.O.; Arsentev, K.Y.; Belozerova, O.Y. Spectroscopic and physicochemical study of the color grain-size effect in lazurite-type minerals. Am. Mineral. 2025. [Google Scholar] [CrossRef]
- Larena, A.; De Ochoa, S.J. Use of Different Surface Analysis Techniques for the Study of the Photo-Degradation of a Polymeric Matrix Composite. Appl. Surf. Sci. 2004, 238, 530–537. [Google Scholar] [CrossRef]
- Järnström, J.; Ihalainen, P.; Backfolk, K.; Peltonen, J. Roughness of Pigment Coatings and Its Influence on Gloss. Appl. Surf. Sci. 2008, 254, 5741–5749. [Google Scholar] [CrossRef]
- Yang, J.; Deng, J.; Zhu, J.; Liu, W.; Zhou, M.; Li, D. Thermal Polymerization of Lacquer Sap and Its Effects on the Properties of Lacquer Film. Prog. Org. Coat. 2016, 94, 41–48. [Google Scholar] [CrossRef]
- Lee, H.; Han, H.; Kim, D.; Lee, B.; Cho, J.H.; Lee, Y.; Lim, J.A. Mixed Urushiol and Laccol Compositions in Natural Lacquers: Convenient Evaluation Method and Its Effect on the Physicochemical Properties of Lacquer Coatings. Prog. Org. Coat. 2021, 154, 106195. [Google Scholar] [CrossRef]
- Yao, Q.X.; Du, M.L.; Sun, M. Improving Anti-aging Coatings by Coupling of Organic and Inorganic Ultraviolet Absorbers. In Proceedings of the 3rd International Conference on Advances in Materials Manufacturing (ICAMMP 2012), Beihai, China, 22–23 December 2012. [Google Scholar]
- Lu, R.; Kamiya, Y.; Kumamoto, T.; Honda, T.; Miyakoshi, T. Deterioration of Surface Structure of Lacquer Films Due to Ultraviolet Irradiation. Surf. Interface Anal. 2006, 38, 1311–1315. [Google Scholar] [CrossRef]







| Aging Time | L* | a* | b* | C* |
|---|---|---|---|---|
| Control | 36.28 ± 0.80 | 36.37 ± 1.82 | 8.03 ± 0.53 | 37.25 ± 1.87 |
| 3 days | 39.66 ± 0.35 | 46.40 ± 3.14 | 12.09 ± 0.49 | 48.36 ± 3.00 |
| 6 days | 39.78 ± 0.15 | 46.68 ± 0.33 | 11.86 ± 0.21 | 48.60 ± 0.32 |
| 9 days | 39.69 ± 0.19 | 46.79 ± 0.68 | 12.06 ± 0.21 | 48.30 ± 0.67 |
| 12 days | 40.38 ± 0.16 | 46.12 ± 0.70 | 12.13 ± 0.26 | 47.69 ± 0.67 |
| 15 days | 39.74 ± 0.38 | 46.02 ± 0.70 | 14.04 ± 0.34 | 48.00 ± 0.65 |
| 18 days | 40.13 ± 0.25 | 46.13 ± 0.62 | 13.43 ± 0.36 | 48.04 ± 0.60 |
| 21 days | 39.52 ± 0.28 | 46.91 ± 0.70 | 14.36 ± 0.41 | 49.06 ± 0.72 |
| 24 days | 39.18 ± 0.32 | 47.86 ± 0.73 | 15.65 ± 0.70 | 50.36 ± 0.75 |
| 27 days | 39.65 ± 0.40 | 46.88 ± 1.03 | 15.75 ± 0.73 | 49.46 ± 1.03 |
| 30 days | 39.63 ± 0.27 | 47.39 ± 1.09 | 16.09 ± 0.75 | 50.05 ± 1.15 |
| Aging Time | L* | a* | b* | C* |
|---|---|---|---|---|
| Control | 58.72 ± 1.57 | 10.46 ± 0.45 | 48.48 ± 2.48 | 49.59 ± 2.51 |
| 3 days | 63.73 ± 0.25 | 10.81 ± 0.18 | 60.61 ± 1.25 | 60.33 ± 1.23 |
| 6 days | 65.58 ± 0.14 | 9.37 ± 0.09 | 60.50 ± 0.53 | 60.74 ± 0.51 |
| 9 days | 66.16 ± 0.13 | 9.21 ± 0.13 | 60.30 ± 0.62 | 61.00 ± 0.62 |
| 12 days | 66.75 ± 0.13 | 9.30 ± 0.13 | 59.18 ± 0.48 | 59.91 ± 0.47 |
| 15 days | 66.20 ± 0.15 | 9.71 ± 0.15 | 61.33 ± 0.47 | 62.09 ± 0.46 |
| 18 days | 66.89 ± 0.19 | 9.61 ± 0.22 | 60.29 ± 0.66 | 61.05 ± 0.66 |
| 21 days | 66.93 ± 0.13 | 9.46 ± 0.14 | 60.83 ± 0.59 | 61.56 ± 0.58 |
| 24 days | 66.88 ± 0.10 | 9.88 ± 0.22 | 62.46 ± 0.83 | 63.24 ± 0.81 |
| 27 days | 67.23 ± 0.18 | 9.72 ± 0.13 | 60.83 ± 0.74 | 61.60 ± 0.73 |
| 30 days | 67.38 ± 0.17 | 9.68 ± 0.15 | 62.79 ± 0.80 | 63.53 ± 0.80 |
| Aging Time | L* | a* | b* | C* |
|---|---|---|---|---|
| Control | 39.28 ± 0.37 | −5.73 ± 0.20 | −14.96 ± 0.23 | 16.02 ± 0.27 |
| 3 days | 45.37 ± 0.35 | −6.94 ± 0.32 | −28.29 ± 0.40 | 28.83 ± 0.43 |
| 6 days | 45.63 ± 0.28 | −4.76 ± 0.23 | −28.77 ± 0.39 | 29.27 ± 0.38 |
| 9 days | 45.95 ± 0.33 | −4.64 ± 0.31 | −29.22 ± 0.40 | 29.58 ± 0.40 |
| 12 days | 46.82 ± 0.33 | −4.40 ± 0.28 | −28.93 ± 0.40 | 29.26 ± 0.41 |
| 15 days | 45.95 ± 0.34 | −4.15 ± 0.25 | −30.52 ± 3.03 | 29.80 ± 0.38 |
| 18 days | 46.66 ± 0.23 | −3.80 ± 0.29 | −30.10 ± 0.41 | 30.34 ± 0.42 |
| 21 days | 46.93 ± 0.32 | −3.92 ± 0.30 | −30.05 ± 0.34 | 30.31 ± 0.36 |
| 24 days | 46.78 ± 0.34 | −3.66 ± 0.24 | −30.14 ± 0.40 | 30.37 ± 0.38 |
| 27 days | 47.16 ± 0.28 | −3.45 ± 0.15 | −30.06 ± 0.33 | 30.25 ± 0.33 |
| 30 days | 47.58 ± 0.31 | −3.34 ± 0.14 | −30.71 ± 0.32 | 30.89 ± 0.32 |
| Wavenumber (cm−1) | Red Chinese Lacquer | Yellow Chinese Lacquer | Blue Chinese Lacquer | Corresponding Functional Group | References |
|---|---|---|---|---|---|
| 3390 | √ | √ | √ | O–H/N–H stretching–phenolic OH, moisture, or protein-related | [2,7,27,28] |
| 3191 | √ | Aromatic O–H stretching (phenol ring) or secondary N–H | |||
| 2925 | √ | √ | √ | Asymmetric C–H stretching (CH2/CH3)—aliphatic side chains | [2,27,29] |
| 2855 | √ | √ | √ | Symmetric C–H stretching (CH2)—alkyl chains | |
| 1720 | √ | √ | √ | C=O stretching—oxidation products (ketones/esters/acids) | [2,7,27,29,30] |
| 1680 | √ | √ | √ | Conjugated C=O or C=C—aging or crosslinking effects | |
| 1550 | √ | Amide II or aromatic nitro compounds (possible protein residual) | [7] | ||
| 1460 | √ | √ | √ | CH2/CH3 bending—confirms aliphatic chain presence | |
| 1380 | √ | √ | √ | Symmetric CH3 bending—methyl groups | [2,27] |
| 1285 | √ | C–O stretching—phenolic or ether-type bonds | |||
| 1232 | √ | √ | C–O–C or C–N stretching—possible ester or polysaccharide | ||
| 1170 | √ | √ | C–O or C–C stretching—aromatic alcohol or glycosidic linkage | [2,7,27,30] | |
| 1140 | √ | √ | C–O–C stretching—esterification, oxidation product | [2,7,27,28] | |
| 1117 | √ | √ | C–O–C stretching—polysaccharides or crosslinked ether bonds | ||
| 1077 | √ | √ | √ | C–O/Si–O stretching—lacquer or mineral component | [2,4,27,31] |
| 850 | √ | Aromatic C–H out-of-plane bending—suggests ring substitution pattern | [2,27] | ||
| 730 | √ | √ | √ | Aromatic ring deformation or substituted ring bending |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nie, Y.; Chen, Y.; Liu, X. Surface Property Evolution of Pigmented Chinese Lacquer Coatings During Mercury Lamp-Induced Photoaging. Coatings 2026, 16, 31. https://doi.org/10.3390/coatings16010031
Nie Y, Chen Y, Liu X. Surface Property Evolution of Pigmented Chinese Lacquer Coatings During Mercury Lamp-Induced Photoaging. Coatings. 2026; 16(1):31. https://doi.org/10.3390/coatings16010031
Chicago/Turabian StyleNie, Yunxi, Yushu Chen, and Xinyou Liu. 2026. "Surface Property Evolution of Pigmented Chinese Lacquer Coatings During Mercury Lamp-Induced Photoaging" Coatings 16, no. 1: 31. https://doi.org/10.3390/coatings16010031
APA StyleNie, Y., Chen, Y., & Liu, X. (2026). Surface Property Evolution of Pigmented Chinese Lacquer Coatings During Mercury Lamp-Induced Photoaging. Coatings, 16(1), 31. https://doi.org/10.3390/coatings16010031

