A Perspective on Radiative Cooling Paints: Bridging the Gap Between Optical Optimization and Practical Application
Abstract
1. Introduction
2. The Fabrication Strategies of State-of-the-Art RC Paints
3. Multiband Spectral Design
4. The Technology Convergence with RC Paints for Enhanced Pnet
5. The Structural Design Strategy for Practical Applications
6. Conclusions and Outlook for the Next Generation of RC Paints
- (I)
- Standardized durability evaluation across realistic environments. While the durability of paints has been extensively studied, the long-term reliability of reinforced composite RC paints under varied service conditions remains insufficiently characterized. Environmental stressors, including UV radiation, acid rain, airborne contaminants, salt spray, and mechanical abrasion, can progressively deteriorate both the optical and mechanical performance of RC paints. Existing durability assessments are often fragmented and lack consistency, frequently falling short of replicating real-world operational environments [20,104]. Consequently, developing unified, scenario-specific evaluation frameworks is critical. Researchers are supposed to assess RC paints through more rigorous and standardized testing methodologies aligned with American Society of Testing Materials (ASTM) or International Organization for Standardization (ISO) guidelines to accurately predict service life. Beyond fundamental durability, targeted performance metrics should undergo stringent evaluation tailored to specific applications, such as building facades, marine vessels, and automotive surfaces [104].
- (II)
- Economic feasibility and scalability in manufacturing. While RC paints inherently provide a low-energy cooling solution, their practical implementation hinges on optimizing the trade-offs among material costs, production complexity, and long-term financial viability. A comprehensive assessment of lifecycle costs and projected payback periods should be integrated into formulation development to quantify economic impact. Simplified production processes, user-friendly application methods, and minimal maintenance demand further amplify the cost-effectiveness of RC paints.
- (III)
- Pioneering multifunctional and intelligent integration: The next-generation RC paints will evolve beyond single-function cooling by integrating advanced capabilities designed for complex environments and cutting-edge technologies. Emerging applications in defense (e.g., infrared camouflage, radar stealth) and smart buildings (e.g., anti-fogging, privacy glazing) necessitate synchronized control of both solar and MIR spectra [110,111]. Realizing such multifunctionality demands interdisciplinary collaboration to balance optical selectivity with mechanical durability and environmental resilience, combining expertise in nanophotonics, metamaterial engineering, polymer chemistry, and system-level design.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.; et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225–228. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Peng, Y.; Lai, J.-C.; Xiao, X.; Jin, W.; Zhou, J.; Yang, Y.; Gao, X.; Tang, J.; Fan, L.; Fan, S.; et al. Colorful low-emissivity paints for space heating and cooling energy savings. Proc. Natl. Acad. Sci. USA 2023, 120, e2300856120. [Google Scholar] [CrossRef]
- Xiang, B.; Zhang, R.; Luo, Y.; Zhang, S.; Xu, L.; Min, H.; Tang, S.; Meng, X. 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 2021, 81, 105600. [Google Scholar] [CrossRef]
- Mercier, S.; Villeneuve, S.; Mondor, M.; Uysal, I. Time–Temperature Management Along the Food Cold Chain: A Review of Recent Developments. Compr. Rev. Food Sci. Food Saf. 2017, 16, 647–667. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Liu, C.; Song, A.Y.; Zhang, Z.; Peng, Y.; Xie, J.; Liu, K.; Wu, C.-L.; Catrysse, P.B.; Cai, L.; et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 2017, 3, e1700895. [Google Scholar] [CrossRef]
- Cui, C.; Lu, J.; Zhang, S.; Su, J.; Han, J. Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 2022, 247, 111954. [Google Scholar] [CrossRef]
- Liu, L.; Shi, S.; Xu, H.; Li, C.; Yang, R.; Luo, Z.; Chen, W.; Chen, Y. Preparation and Properties of High-temperature Resistant Infrared Radiant Coating with High Emissivity for Spacecraft. Paint Coat. Ind. 2023, 53, 8–13+19. [Google Scholar]
- Tang, H.; Guo, C.; Fan, F.; Pan, H.; Xu, Q.; Zhao, D. Both sub-ambient and above-ambient conditions: A comprehensive approach for the efficient use of radiative cooling. Energy Environ. Sci. 2024, 17, 4498–4507. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, X.; Wang, Z.; Li, J.; Mu, Y.; Zhou, S.; Chen, F.; Minus, M.L.; Xiao, G.; Zheng, Y. Subambient daytime cooling enabled by hierarchically architected all-inorganic metapaper with enhanced thermal dissipation. Nano Energy 2022, 96, 107085. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Raman, A.P.; Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2017, 2, 17143. [Google Scholar] [CrossRef]
- Sun, X.; Sun, Y.; Zhou, Z.; Alam, M.A.; Bermel, P. Radiative sky cooling: Fundamental physics, materials, structures, and applications. Nanophotonics 2017, 6, 997–1015. [Google Scholar] [CrossRef]
- Fan, S.; Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 2022, 16, 182–190. [Google Scholar] [CrossRef]
- Park, C.; Park, C.; Park, S.; Lee, J.; Choi, J.-H.; Kim, Y.S.; Yoo, Y. Passive Daytime Radiative Cooling by Thermoplastic Polyurethane Wrapping Films with Controlled Hierarchical Porous Structures. ChemSusChem 2022, 15, e202201842. [Google Scholar] [CrossRef]
- Xu, J.; Tan, Z. Research on the Principles and Applications of Radiative Cooling Materials. Paint Coat. Ind. 2025, 55, 83–88. [Google Scholar] [CrossRef]
- Harrison, A.W.; Walton, M.R. Radiative cooling of TiO2 white paint. Sol. Energy 1978, 20, 185–188. [Google Scholar] [CrossRef]
- Song, J.; Zhang, W.; Sun, Z.; Pan, M.; Tian, F.; Li, X.; Ye, M.; Deng, X. Durable radiative cooling against environmental aging. Nat. Commun. 2022, 13, 4805. [Google Scholar] [CrossRef]
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A.P. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, S.; Xu, J.; Wu, X.; Guo, Z.; Huang, Y.; Zhang, R. Progress in passive daytime radiative cooling from spectral design to real application. Carbon Future 2025, 2, 9200033. [Google Scholar] [CrossRef]
- Lin, C.; Lin, T.; Cheng, J.; Lin, B. Research Progress of Radiative Cooling Coatings. Paint Coat. Ind. 2025, 55, 83–88. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Qiao, Z.; Lei, C.; Ju, Z.; Zhang, Y.; Zhang, Q.; Fu, Q.; Wu, K. Crack-Resistant and Self-Healable Passive Radiative Cooling Silicone Compounds. Adv. Mater. 2025, 37, 2500738. [Google Scholar] [CrossRef]
- Yin, X.; Yang, R.; Tan, G.; Fan, S. Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 2020, 370, 786–791. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, W.; Ni, J.; Li, L.; Hao, Y.; Pei, G.; Zhao, B. Multi-interface porous coating for efficient sub-ambient daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2025, 286, 113577. [Google Scholar] [CrossRef]
- Yang, J.-H.; Pu, Q.-R.; Hu, W.-J.; Liu, Q.-Q.; Li, X.; Huang, W.-H.; Zhang, N.; Wang, Y. “Pore in Pore” Engineering in Poly(dimethylsiloxane)/Silicon Oxide Foams for Passive Daytime Radiative Cooling. ACS Appl. Polym. Mater. 2025, 7, 6887–6897. [Google Scholar] [CrossRef]
- Peng, Z.-C.; Zeng, F.-R.; Zeng, Z.-W.; Su, P.-G.; Tang, P.-J.; Liu, B.-W.; Zhang, Y.; Wang, Y.-Z.; Zhao, H.-B. Scalable Low-Carbon Ambient-Dried Foam-Like Aerogels for Radiative Cooling with Extreme Environmental Resistance. Adv. Mater. 2025, 37, 2505224. [Google Scholar] [CrossRef]
- Liu, Y.; Caratenuto, A.; Chen, F.; Zheng, Y. Controllable-gradient-porous cooling materials driven by multistage solvent displacement method. Chem. Eng. J. 2024, 488, 150657. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef]
- Li, X.; Peoples, J.; Huang, Z.; Zhao, Z.; Qiu, J.; Ruan, X. Full Daytime Sub-ambient Radiative Cooling in Commercial-like Paints with High Figure of Merit. Cell Rep. Phys. Sci. 2020, 1, 100221. [Google Scholar] [CrossRef]
- Felicelli, A.; Katsamba, I.; Barrios, F.; Zhang, Y.; Guo, Z.; Peoples, J.; Chiu, G.; Ruan, X. Thin layer lightweight and ultrawhite hexagonal boron nitride nanoporous paints for daytime radiative cooling. Cell Rep. Phys. Sci. 2022, 3, 101058. [Google Scholar] [CrossRef]
- Lee, J.; Im, D.; Sung, S.; Yu, J.; Kim, H.; Lee, J.; Yoo, Y. Scalable and efficient radiative cooling coatings using uniform-hollow silica spheres. Appl. Therm. Eng. 2024, 254, 123810. [Google Scholar] [CrossRef]
- Li, X.; Peoples, J.; Yao, P.; Ruan, X. Ultrawhite BaSO4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling. ACS Appl. Mater. Interfaces 2021, 13, 21733–21739. [Google Scholar] [CrossRef]
- Tang, H.; Li, S.; Zhang, Y.; Na, Y.; Sun, C.; Zhao, D.; Liu, J.; Zhou, Z. Radiative cooling performance and life-cycle assessment of a scalable MgO paint for building applications. J. Clean. Prod. 2022, 380, 135035. [Google Scholar] [CrossRef]
- Tong, Z.; Peoples, J.; Li, X.; Yang, X.; Bao, H.; Ruan, X. Electronic and phononic origins of BaSO4 as an ultra-efficient radiative cooling paint pigment. Mater. Today Phys. 2022, 24, 100658. [Google Scholar] [CrossRef]
- Li, M.; Lin, C.; Li, K.; Ma, W.; Dopphoopha, B.; Li, Y.; Huang, B. A UV-Reflective Organic–Inorganic Tandem Structure for Efficient and Durable Daytime Radiative Cooling in Harsh Climates. Small 2023, 19, 2301159. [Google Scholar] [CrossRef]
- Park, C.; Park, C.; Nie, X.; Lee, J.; Kim, Y.S.; Yoo, Y. Fully Organic and Flexible Biodegradable Emitter for Global Energy-Free Cooling Applications. ACS Sustain. Chem. Eng. 2022, 10, 7091–7099. [Google Scholar] [CrossRef]
- Hu, D.; Sun, S.; Du, P.; Lu, X.; Zhang, H.; Zhang, Z. Hollow Core-Shell Particle-Containing Coating for Passive Daytime Radiative Cooling. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106949. [Google Scholar] [CrossRef]
- Liu, Y.; Bu, X.; Yu, T.; Wang, X.; He, M.; Zhang, Z.; Feng, M.; Zhou, Y. Design and scalable fabrication of core-shell nanospheres embedded spectrally selective single-layer coatings for durable daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2023, 260, 112493. [Google Scholar] [CrossRef]
- Barber, E.; Feng, D.; Fang, Z.; Carne, D.; Gonzalez, O.R.; Lee, W.-J.; Vansal, N.; Raykova, K.; Ruan, X. Efficient, Hydrophobic, and Weather-Resistant Radiative Cooling Paints with Silicone-Based Binders. ACS Appl. Opt. Mater. 2025, 3, 1137–1144. [Google Scholar] [CrossRef]
- Aljwirah, A.K.; Liu, X.; Rivera Gonzalez, O.; Alhammadi, K.; Lee, W.-J.; Katsamba, I.; Ruan, X. Water-Based Hydrophobic Paints for Daytime Radiative Cooling. ACS Appl. Mater. Interfaces 2025, 17, 32914–32927. [Google Scholar] [CrossRef]
- Mishra, B.R.; Sundaram, S.; Sasihithlu, K. Cooling Performance of TiO2-Based Radiative Cooling Coating in Tropical Conditions. ACS Omega 2024, 9, 49494–49502. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Wang, T.; Zhang, Y.; Huang, T.; Chen, M.; Wu, L. Scalable bilayer thin coatings with enhanced thermal dissipation for passive daytime radiative cooling. Chem. Eng. J. 2024, 495, 153182. [Google Scholar] [CrossRef]
- Li, L.; Zulfiqar, U.; Ramirez-Cuevas, F.V.; Parvate, S.; Yu, Y.; Alduweesh, A.; Parkin, I.P.; Zghaib, P.; Mead, S.; Khan, H.S.; et al. All-day radiative cooling with superhydrophobic, fluorine-free polydimethylsiloxane-embedded porous polyethylene coating. Mater. Today Sustain. 2025, 31, 101168. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Jiang, Q.; Zhang, W.; Wang, B.; Li, R.; Zhao, S.; Wang, F.; Huang, Y.; Lyu, P.; et al. An all-weather radiative human body cooling textile. Nat. Sustain. 2023, 6, 1446–1454. [Google Scholar] [CrossRef]
- Bentley, J. 2—Organic film formers. In Paint and Surface Coatings, 2nd ed.; Lambourne, R., Strivens, T.A., Eds.; Woodhead Publishing: Cambridge, UK, 1999; pp. 19–90. [Google Scholar]
- Marrion, A.R. (Ed.) The Chemistry and Physics of Coatings; The Royal Society of Chemistry: Cambridge, UK, 2004. [Google Scholar]
- Javadi, A.; Cobaj, A.; Soucek, M.D. Chapter 12—Commercial waterborne coatings. In Handbook of Waterborne Coatings; Zarras, P., Soucek, M.D., Tiwari, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 303–344. [Google Scholar]
- Mohanty, D.S.M.; Kanny, K. Chapter 3—Role of Additives in Waterborne Epoxy Coatings. In Recent Advances on Waterborne Epoxy Coatings; Pradhan, S.S.M., Mohanty, S., Eds.; Springer: Singapore, 2025; pp. 37–62. [Google Scholar]
- Dopphoopha, B.; Li, K.; Lin, C.; Huang, B. Aqueous double-layer paint of low thickness for sub-ambient radiative cooling. Nanophotonics 2024, 13, 659–668. [Google Scholar] [CrossRef]
- Xia, S.; Wang, F.; Yang, S.; Long, H.; Ju, H.; Ou, J. Water-based kaolin/polyacrylate cooling paint for exterior walls. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132401. [Google Scholar] [CrossRef]
- Li, G.; Tang, Y. Progress and Development Trend of Standardization of Coatings and Pigments. Paint Coat. Ind. 2024, 54, 81–88. [Google Scholar]
- Liu, M. Research on the Application of Substrate Wetting Agent in Water-borne Coatings. Paint Coat. Ind. 2023, 53, 76–81. [Google Scholar]
- Wang, Y.; Wen, S.; Wang, J.; Wang, C.; Chen, Y.; Zhang, J.; Li, S. Water Evaporation of Waterborne Polyacrylate Coatings During the Film Formation Process. Paint Coat. Ind. 2022, 52, 15–20. [Google Scholar]
- Yao, H.; Wang, R.; Liang, F.; Xie, W.; Xu, Y.; Xu, Z.; Li, G.; Ouyang, S. Influence of Formulation Design of Waterborne Paint System on the Compatibility of “Wet-on-wet” Coating. Paint Coat. Ind. 2022, 52, 78–82. [Google Scholar]
- Li, P.; Liu, Y.; Liu, X.; Wang, A.; Liu, W.; Yi, N.; Kang, Q.; He, M.; Pei, Z.; Chen, J.; et al. Reversed Yolk–Shell Dielectric Scatterers for Advanced Radiative Cooling. Adv. Funct. Mater. 2024, 34, 2315658. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, P.; Xu, M.; Ding, Z.; Zhuang, Z. Study on Thermal Properties of Inorganic Reflective Thermal Insulation Coatings. Paint Coat. Ind. 2020, 50, 30–35. [Google Scholar]
- Qi, L.; Cai, W.; Cui, T.; Li, J.; Song, L.; Gui, Z.; Fei, B.; Zhu, J.; Hu, Y.; Xing, W. Anisotropic Radiative Cooling Dynamics Enabling Efficient Thermal Hazard Mitigation via Hierarchically Engineered Thermal Diodes. Adv. Funct. Mater. 2025, e08101. [Google Scholar] [CrossRef]
- Han, D.; Wang, C.; Han, C.B.; Cui, Y.; Ren, W.R.; Zhao, W.K.; Jiang, Q.; Yan, H. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO2 Aerogel Coating for Daytime Radiative Cooling. ACS Appl. Mater. Interfaces 2024, 16, 9303–9312. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhang, Y.; Liu, X.; Han, H.; Kondo, H.; Zhou, H. Flexible highly thermal conductive hybrid film for efficient radiative cooling. Sol. Energy Mater. Sol. Cells 2024, 266, 112660. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, K.; Lai, X.; Hu, L.; Vogelbacher, F.; Song, Y.; Jiang, L.; Li, M. Brilliant colorful daytime radiative cooling coating mimicking scarab beetle. Matter 2025, 8, 101898. [Google Scholar] [CrossRef]
- Feng, D.; Witty, A.S.; Birnbaum, F.I.; Gonzalez, O.G.R.; Felicelli, A.; Lee, W.-J.; Barber, E.C.; Ruan, X. Self-Stratifying Colored Radiative Cooling Paints Through Narrow-Band Color Preservation Scheme. Adv. Mater. 2025, 37, e04382. [Google Scholar] [CrossRef]
- Chen, Y.; Mandal, J.; Li, W.; Smith-Washington, A.; Tsai, C.-C.; Huang, W.; Shrestha, S.; Yu, N.; Han, R.P.S.; Cao, A.; et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 2020, 6, eaaz5413. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Dong, Y.; Yin, X.; Lei, D.; Dai, J.-G. Colored Radiative Cooling: From Photonic Approaches to Fluorescent Colors and Beyond. Adv. Mater. 2025, 37, 2414300. [Google Scholar] [CrossRef]
- Lee, K.W.; Yi, J.; Kim, M.K.; Kim, D.R. Transparent radiative cooling cover window for flexible and foldable electronic displays. Nat. Commun. 2024, 15, 4443. [Google Scholar] [CrossRef]
- Zou, H.; Wang, C.; Yu, J.; Huang, D.; Yang, R.; Wang, R. Eliminating greenhouse heat stress with transparent radiative cooling film. Cell Rep. Phys. Sci. 2023, 4, 101539. [Google Scholar] [CrossRef]
- Liang, Z.; Geng, M.; Dong, B.; Zhao, L.; Wang, S. Transparent and robust SiO2/PDMS composite coatings with self-cleaning. Surf. Eng. 2020, 36, 643–650. [Google Scholar] [CrossRef]
- Li, D.; Liu, X.; Li, W.; Lin, Z.; Zhu, B.; Li, Z.; Li, J.; Li, B.; Fan, S.; Xie, J.; et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 2021, 16, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Wang, X.; Ma, Y.; Hu, B.; Zhou, J. Transparent Polymer Coatings for Energy-Efficient Daytime Window Cooling. Cell Rep. Phys. Sci. 2020, 1, 100231. [Google Scholar] [CrossRef]
- Yu, T.; Liu, R.; Wang, X.; Yang, Z.; Gu, X.; Yang, S.; Ye, Z.; Wen, Z.; Lu, J. Transparent Radiative Cooling Films Based on Dendritic Silica for Room Thermal Management. Carbon Neutral 2025, 4, e70020. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.; Son, S.; Yang, Y.; Lee, H.; Rho, J. Visibly Transparent Radiative Cooler under Direct Sunlight. Adv. Opt. Mater. 2021, 9, 2002226. [Google Scholar] [CrossRef]
- Hu, L.; Wang, C.; Zhu, H.; Zhou, Y.; Li, H.; Liu, L.; Ma, L. Adaptive Thermal Management Radiative Cooling Smart Window with Perfect Near-Infrared Shielding. Small 2024, 20, 2306823. [Google Scholar] [CrossRef]
- Xiao, C.; Liu, M.; Yao, K.; Zhang, Y.; Zhang, M.; Yan, M.; Sun, Y.; Liu, X.; Cui, X.; Fan, T.; et al. Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 2025, 643, 80–88. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, G.; Xiang, X.; Qin, M.; Qiu, Y.; Lai, J.-C.; Peng, Y. Self-Stratifying Colorful Low-Emissivity Paint for Thermal Regulation and Energy Saving. Adv. Funct. Mater. 2025, 35, 2507409. [Google Scholar] [CrossRef]
- Liu, X.; Lee, W.-J.; Carne, D.W.; Tian, Y.; Felicelli, A.; Lei, Y.; Romo, J.A.; You, L.; Xiong, Z.; Gonzalez, O.G.R.; et al. High-Performance Low-Emissivity Paints Enabled by N-Doped Poly(benzodifurandione) (n-PBDF) for Energy-Efficient Buildings. Adv. Funct. Mater. 2025, 2419685. [Google Scholar] [CrossRef]
- Xie, F.; Jin, W.; Nolen, J.R.; Pan, H.; Yi, N.; An, Y.; Zhang, Z.; Kong, X.; Zhu, F.; Jiang, K.; et al. Subambient daytime radiative cooling of vertical surfaces. Science 2024, 386, 788–794. [Google Scholar] [CrossRef]
- Wu, R.; Sui, C.; Chen, T.-H.; Zhou, Z.; Li, Q.; Yan, G.; Han, Y.; Liang, J.; Hung, P.-J.; Luo, E.; et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 2024, 384, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Song, Z.; Ni, J.; Du, X.; Cao, Y.; Yang, Y.; Wang, W.; Wang, J. Dual-Mode Porous Polymeric Films with Coral-like Hierarchical Structure for All-Day Radiative Cooling and Heating. ACS Nano 2023, 17, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Qi, L.; Cui, T.; Lin, B.; Rahman, M.Z.; Hu, X.; Ming, Y.; Chan, A.P.; Xing, W.; Wang, D.-Y.; et al. Chameleon-Inspired, Dipole Moment-Increasing, Fire-Retardant Strategies Toward Promoting the Practical Application of Radiative Cooling Materials. Adv. Funct. Mater. 2025, 35, 2412902. [Google Scholar] [CrossRef]
- Han, D.; Ng, B.F.; Wan, M.P. Preliminary study of passive radiative cooling under Singapore’s tropical climate. Sol. Energy Mater. Sol. Cells 2020, 206, 110270. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Liu, Y.; Zhang, C.; He, M.; Pei, Z.; Chen, J.; Shi, K.; Liu, F.; Wang, W.; et al. Hybrid Passive Cooling for Power Equipment Enabled by Metal-Organic Framework. Adv. Mater. 2024, 36, 2409473. [Google Scholar] [CrossRef]
- Yu, L.; Huang, Y.; Zhao, Y.; Rao, Z.; Li, W.; Chen, Z.; Chen, M. Self-sustained and Insulated Radiative/Evaporative Cooler for Daytime Subambient Passive Cooling. ACS Appl. Mater. Interfaces 2024, 16, 6513–6522. [Google Scholar] [CrossRef]
- Xu, L.; Sun, D.-W.; Tian, Y.; Sun, L.; Zhu, Z. Self-rehydrating and highly entangled hydrogel for sustainable daytime passive cooling. Chem. Eng. J. 2024, 479, 147795. [Google Scholar] [CrossRef]
- Ye, Q.; Chen, D.; Zhao, Z.; Yan, H.; Chen, M. Adhesive Hydrogel Paint for Passive Heat Dissipation via Radiative Coupled Evaporation Cooling. Small 2025, 21, 2412221. [Google Scholar] [CrossRef]
- Fei, J.; Zhang, X.; Han, D.; Lei, Y.; Xie, F.; Zhou, K.; Koh, S.-W.; Ge, J.; Zhou, H.; Wang, X.; et al. Passive cooling paint enabled by rational design of thermal-optical and mass transfer properties. Science 2025, 388, 1044–1049. [Google Scholar] [CrossRef]
- Ma, J.-W.; Zeng, F.-R.; Lin, X.-C.; Wang, Y.-Q.; Ma, Y.-H.; Jia, X.-X.; Zhang, J.-C.; Liu, B.-W.; Wang, Y.-Z.; Zhao, H.-B. A photoluminescent hydrogen-bonded biomass aerogel for sustainable radiative cooling. Science 2024, 385, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Fu, Y.; Liu, D.; Yang, N.; Dai, J.-G.; Lei, D. Fluorescence-Enabled Colored Bilayer Subambient Radiative Cooling Coatings. Adv. Opt. Mater. 2024, 12, 2303296. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Wang, S.; Jin, C.; Zhu, B.; Su, Y.; Dong, X.; Liang, J.; Lu, Z.; Zhou, L.; et al. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 2022, 67, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Chen, J.; Zhang, Y.; Lu, L. Spectrally Engineered Coatings for Steering the Solar Photons. Adv. Mater. 2025, 37, 2502542. [Google Scholar] [CrossRef]
- Fu, Y.; Ma, X.; Zhang, X.-W.; Li, Z.; Wang, C.; Lin, K.; Zhou, Y.; Pan, A.; Chen, X.; Li, X.; et al. Photoluminescent radiative cooling for aesthetic and urban comfort. Nat. Sustain. 2025, 8, 1328–1339. [Google Scholar] [CrossRef]
- Ładosz, Ł.; Sudoł, E.; Kozikowska, E.; Choińska, E. Artificial Weathering Test Methods of Waterborne Acrylic Coatings for Steel Structure Corrosion Protection. Materials 2024, 17, 1857. [Google Scholar] [CrossRef]
- Elert, K.; Cardell, C. Weathering behavior of cinnabar-based tempera paints upon natural and accelerated aging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 216, 236–248. [Google Scholar] [CrossRef]
- Nguyen, T.; Martin, J.; Byrd, E. Relating laboratory and outdoor exposure of coatings: IV. Mode and mechanism for hydrolytic degradation of acrylic-melamine coatings exposed to water vapor in the absence of UV light. J. Coat. Technol. 2003, 75, 37–50. [Google Scholar] [CrossRef]
- Hook, J.W.; Jacox, P.J.; Spence, J.W. Acid rain effects on the exterior durability of architectural coatings on wood. Prog. Org. Coat. 1994, 24, 175–188. [Google Scholar] [CrossRef]
- Sato, K. The internal stress of coating films. Prog. Org. Coat. 1980, 8, 143–160. [Google Scholar] [CrossRef]
- Rodrıguez, M.T.; Gracenea, J.J.; Kudama, A.H.; Suay, J.J. The influence of pigment volume concentration (PVC) on the properties of an epoxy coating: Part I. Thermal and mechanical properties. Prog. Org. Coat. 2004, 50, 62–67. [Google Scholar] [CrossRef]
- Beaugendre, A.; Degoutin, S.; Bellayer, S.; Pierlot, C.; Duquesne, S.; Casetta, M.; Jimenez, M. Self-stratifying coatings: A review. Prog. Org. Coat. 2017, 110, 210–241. [Google Scholar] [CrossRef]
- Bijarniya, J.P.; Sarkar, J.; Tiwari, S.; Maiti, P. Development and degradation analysis of novel three-layered sustainable composite coating for daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2023, 257, 112386. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, X.; Cheng, Z.; Hu, W.; Long, E. A sandwich-structured material with wavelength conversion functionality for all-day radiative cooling. Renew. Energy 2025, 255, 123839. [Google Scholar] [CrossRef]
- Yang, L.; Li, B.; Zheng, X.; Zhu, J.; Pi, L. Mechanism Analysis and Solution of Loss of Light on Two component Varnish under External Mixed Spraying Mode. Paint Coat. Ind. 2024, 54, 74–76. [Google Scholar]
- Zhao, X.; Li, T.; Xie, H.; Liu, H.; Wang, L.; Qu, Y.; Li, S.C.; Liu, S.; Brozena, A.H.; Yu, Z.; et al. A solution-processed radiative cooling glass. Science 2023, 382, 684–691. [Google Scholar] [CrossRef]
- Kallerup, R.; Foged, C. Advances in Delivery Science and Technology; Springer: New York, NY, USA, 2015; pp. 15–29. [Google Scholar]
- Wu, Z.; Ouyang, G.; Shi, X.; Ma, Q.; Wan, G.; Qiao, Y. Absorption and quantitative characteristics of C-H bond and O-H bond of NIR. Opt. Spectrosc. 2014, 117, 703–709. [Google Scholar] [CrossRef]
- Song, J.; Shen, Q.; Shao, H.; Deng, X. Anti-Environmental Aging Passive Daytime Radiative Cooling. Adv. Sci. 2023, 11, e230566. [Google Scholar] [CrossRef]
- Tian, X.; Wang, H.; Lu, Y.; Wang, M.; Wang, J.; Liu, H.; Zhou, W.; Zhao, G.; Gao, J.; Sun, F.; et al. Auto-Deposited Microparticle Composite Coating for Low-Cost and Efficient Daytime Radiative Cooling. ACS Appl. Mater. Interfaces 2025, 17, 8274–8284. [Google Scholar] [CrossRef]
- Fu, Y.; An, Y.; Xu, Y.; Dai, J.-G.; Lei, D. Polymer coating with gradient-dispersed dielectric nanoparticles for enhanced daytime radiative cooling. EcoMat 2022, 4, e12169. [Google Scholar] [CrossRef]
- Dong, S.; Wu, Q.; Zhang, W.; Xia, G.; Yang, L.; Cui, J. Slippery Passive Radiative Cooling Supramolecular Siloxane Coatings. ACS Appl. Mater. Interfaces 2022, 14, 4571–4578. [Google Scholar] [CrossRef]
- Jiang, L.; Wei, H.; Niu, T.; Chen, P. Phase Separation Theory and Design Strategy of Gradient Self-stratifying Coating System. Paint Coat. Ind. 2025, 55, 76–82. [Google Scholar]
- Zahedi, S.; Zaarei, D.; Ghaffarian, S.R. Self-stratifying coatings: A review. J. Coat. Technol. Res. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Li, B.-X.; Luo, Z.; Sun, H.; Quan, Q.; Zhou, S.; Yang, W.-G.; Yu, Z.-Z.; Yang, D. Spectral-Selective and Adjustable Patterned Polydimethylsiloxane/MXene/Nanoporous Polytetrafluoroethylene Metafabric for Dynamic Infrared Camouflage and Thermal Regulation. Adv. Funct. Mater. 2024, 34, 2407644. [Google Scholar] [CrossRef]
- Sui, C.; Pu, J.; Chen, T.-H.; Liang, J.; Lai, Y.-T.; Rao, Y.; Wu, R.; Han, Y.; Wang, K.; Li, X.; et al. Dynamic electrochromism for all-season radiative thermoregulation. Nat. Sustain. 2023, 6, 428–437. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, Z.; Guo, Z.; Huang, Y.; Zhao, S.; Zang, Y.; Lan, F.; Liu, R.; Feng, L.; Tao, S.; Cai, Q.; et al. A Perspective on Radiative Cooling Paints: Bridging the Gap Between Optical Optimization and Practical Application. Coatings 2026, 16, 27. https://doi.org/10.3390/coatings16010027
Zhao Z, Guo Z, Huang Y, Zhao S, Zang Y, Lan F, Liu R, Feng L, Tao S, Cai Q, et al. A Perspective on Radiative Cooling Paints: Bridging the Gap Between Optical Optimization and Practical Application. Coatings. 2026; 16(1):27. https://doi.org/10.3390/coatings16010027
Chicago/Turabian StyleZhao, Zhuojing, Zhenyu Guo, Ya Huang, Siming Zhao, Yonglu Zang, Fan Lan, Ruina Liu, Linan Feng, Shuang Tao, Qixuan Cai, and et al. 2026. "A Perspective on Radiative Cooling Paints: Bridging the Gap Between Optical Optimization and Practical Application" Coatings 16, no. 1: 27. https://doi.org/10.3390/coatings16010027
APA StyleZhao, Z., Guo, Z., Huang, Y., Zhao, S., Zang, Y., Lan, F., Liu, R., Feng, L., Tao, S., Cai, Q., Lei, M., & Zhang, R. (2026). A Perspective on Radiative Cooling Paints: Bridging the Gap Between Optical Optimization and Practical Application. Coatings, 16(1), 27. https://doi.org/10.3390/coatings16010027

