Influence of Voltage on the Microstructure and Tribocorrosion Properties of Porous Coatings Produced by Micro-Arc Oxidation
Abstract
1. Introduction
- (1)
- The first group includes solutions that cause rapid dissolution of the metal, such as NaCl, NaClO3, NaOH, HCl, and NaNO3. These systems are rarely used for producing durable oxide coatings but are useful for preliminary surface activation.
- (2)
- The second group comprises solutions that induce slow dissolution, such as H2SO4 or Na2SO4, leading to a more stable growth of the oxide layer.
- (3)
- The third group consists of electrolytes that cause metal passivation within a narrow voltage range, for example, sodium acetate or phosphoric acid.
- (4)
- The fourth group includes fluoride-containing electrolytes (e.g., NaF, KF), which exhibit complex behavior but often facilitate a smooth transition into the spark discharge regime.
- (5)
- The fifth group contains solutions that produce weak passivation.
- (6)
- The sixth group includes electrolytes that promote strong passivation, such as boric acids and salts of phosphoric, carbonic, and inorganic acids, as well as polymeric anions (silicates, aluminates, molybdates, tungstates).
- (a)
- solutions that form the layer solely through oxidation of the metal (i.e., they provide only oxygen);
- (b)
- solutions whose anions are incorporated into the coating and alter its properties (e.g., phosphates, silicate ions);
- (c)
- solutions containing cationic additives (Na+, K+, Al3+, etc.);
- (d)
- suspensions containing solid particles that are transported by cataphoresis and embedded into the growing layer.
2. Materials and Methods
- •
- S is the worn track section mm2;
- •
- l is the full amplitude mm;
- •
- L is the total measurement distance m;
- •
- Fn is the normal load N;
- •
- WRs is the wear rate of the moving sample mm3/(N·m).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Yu, T.; Pang, Z.; Liu, X.; Shi, C.; Du, N. Improving the Fatigue Resistance of Plasma Electrolytic Oxidation Coated Titanium Alloy by Ultrasonic Surface Rolling Pretreatment. Int. J. Fatigue 2024, 181, 108157. [Google Scholar] [CrossRef]
- Wang, W.; Feng, S.; Li, Z.; Chen, Z.; Zhao, T. Microstructure and Properties of Micro-Arc Oxidation Ceramic Films on AerMet100 Steel. J. Mater. Res. Technol. 2020, 9, 6014–6027. [Google Scholar] [CrossRef]
- Zhassulan, A.; Rakhadilov, B.; Baizhan, D.; Kengesbekov, A.; Kakimzhanov, D.; Musataeva, N. Influence of TiO2 Nanoparticle Concentration on Micro-Arc Oxidized Calcium–Phosphate Coatings: Corrosion Resistance and Biological Response. Coatings 2025, 15, 1142. [Google Scholar] [CrossRef]
- Jiang, H.; Shao, Z.; Jing, B. Effect of Electrolyte Composition on Photocatalytic Activity and Corrosion Resistance of Micro-Arc Oxidation Coating on Pure Titanium. Procedia Earth Planet. Sci. 2011, 2, 156–161. [Google Scholar] [CrossRef]
- Marques, I.S.V.; Alfaro, M.F.; da Cruz, N.C.; Mesquita, M.F.; Takoudis, C.; Sukotjo, C.; Mathew, M.T.; Barão, V.A.R. Tribocorrosion Behavior of Biofunctional Titanium Oxide Films Produced by Micro-Arc Oxidation: Synergism and Mechanisms. J. Mech. Behav. Biomed. Mater. 2016, 60, 8–21. [Google Scholar] [CrossRef]
- Yao, Z.Q.; Ivanisenko, Y.; Diemant, T.; Caron, A.; Chuvilin, A.; Jiang, J.Z.; Valiev, R.Z.; Qi, M.; Fecht, H.-J. Synthesis and Properties of Hydroxyapatite-Containing Porous Titania Coating on Ultrafine-Grained Titanium by Micro-Arc Oxidation. Acta Biomater. 2010, 6, 2816–2825. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Zhassulan, A.; Ormanbekov, K.; Shynarbek, A.; Baizhan, D.; Aldabergenova, T. Surface Modification and Tribological Performance of Calcium Phosphate Coatings with TiO2 Nanoparticles on VT1-0 Titanium by Micro-Arc Oxidation. Crystals 2024, 14, 945. [Google Scholar] [CrossRef]
- Shin, D.H.; Kim, I.; Kim, J.; Kim, Y.S.; Semiatin, S.L. Microstructure Development during Equal-Channel Angular Pressing of Titanium. Acta Mater. 2003, 51, 983–996. [Google Scholar] [CrossRef]
- Sergueeva, A.V.; Stolyarov, V.V.; Valiev, R.Z.; Mukherjee, A.K. Superplastic Behaviour of Ultrafine-Grained Ti–6Al–4V Alloys. Mater. Sci. Eng. A 2002, 323, 318–325. [Google Scholar] [CrossRef]
- Komarova, E.G.; Sharkeev, Y.P.; Sedelnikova, M.B.; Prosolov, K.A.; Khlusov, I.A.; Prymak, O.; Epple, M. Zn- or Cu-Containing CaP-Based Coatings Formed by Micro-arc Oxidation on Titanium and Ti-40Nb Alloy: Part I—Microstructure, Composition and Properties. Materials 2020, 13, 4116. [Google Scholar] [CrossRef]
- Sharkeev, Y.; Komarova, E.; Sedelnikova, M.; Sun, Z.; Zhu, Q.; Zhang, J.; Tolkacheva, T.; Uvarkin, P. Structure and Properties of Micro-Arc Calcium Phosphate Coatings on Pure Titanium and Ti–40Nb Alloy. Trans. Nonferrous Met. Soc. China 2017, 27, 125–133. [Google Scholar] [CrossRef]
- Rakhadilov, B.; Baizhan, D. Creation of Bioceramic Coatings on the Surface of Ti–6Al–4V Alloy by Plasma Electrolytic Oxidation Followed by Gas Detonation Spraying. Coatings 2021, 11, 1433. [Google Scholar] [CrossRef]
- Wang, Y.M.; Jiang, B.L.; Lei, T.Q.; Guo, L.X. Microarc Oxidation Coatings Formed on Ti6Al4V in Na2SiO3 System Solution: Microstructure, Mechanical and Tribological Properties. Surf. Coat. Technol. 2006, 201, 82–89. [Google Scholar] [CrossRef]
- Ming, X.; Ma, X.; Zhang, Z.; Zhang, P.; Li, Q.; Wu, Y.; Li, Y. Microstructures and Mechanical Properties of Porous Coating Prepared by Micro-Arc Oxidation on Low-Elastic-Modulus Ti-19Zr-10Nb-1Fe Alloy. Ceram. Int. 2025, 51, 56486–56497. [Google Scholar] [CrossRef]
- Raizer, Y.P. Physics of Gas Discharge; Nauka: Moscow, Russia, 1992. [Google Scholar]
- Wang, C.; Hu, H.; Du, S.; Cheng, B.; Pan, Y.; Lu, H. Influence of the Dual-Current Method on the Properties and Growth Mechanisms of Micro-Arc Oxidation Coatings. Mater. Chem. Phys. 2024, 328, 130031. [Google Scholar] [CrossRef]
- Zhu, W.; Fang, Y.-J.; Zheng, H.; Tan, G.; Cheng, H.; Ning, C. Effect of Applied Voltage on Phase Components of Composite Coatings Prepared by Micro-Arc Oxidation. Thin Solid Film. 2013, 544, 79–82. [Google Scholar] [CrossRef]
- Moskalewicz, T.; Kruk, A.; Kot, M.; Kayali, S.; Czyrska-Filemonowicz, A. Characterization of Microporous Oxide Layer Synthesized on Ti–6Al–7Nb Alloy by Micro-Arc Oxidation. Arch. Civ. Mech. Eng. 2014, 14, 370–375. [Google Scholar] [CrossRef]
- Sedelnikova, M.B.; Ugodchikova, A.V.; Tolkacheva, T.V.; Chebodaeva, V.V.; Cluklhov, I.A.; Khimich, M.A.; Bakina, O.V.; Lerner, M.I.; Egorkin, V.S.; Schmidt, J.; et al. Surface Modification of Mg0.8Ca Alloy via Wollastonite Micro-Arc Coatings: Significant Improvement in Corrosion Resistance. Metals 2021, 11, 754. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Molaei, M.; Babaei, K. The Effects of Nano- and Micro-Particles on Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Titanium Substrates: A Review. Surf. Interfaces 2020, 21, 100659. [Google Scholar] [CrossRef]
- Ari, J.; Louvet, G.; Ledemi, Y.; Célarié, F.; Morais, S.; Bureau, B. Anodic bonding of mid-infrared transparent germanate glasses for high pressure–high temperature microfluidic applications. Sci. Technol. Adv. Mater. 2020, 21, 11–24. [Google Scholar] [CrossRef]
- Lokeshkumar, E.; Premchand, C.; Manojkumar, P.; Shishir, R.; Rama Krishna, L.; Prashanth, K.G.; Rameshbabu, N. Effect of Electrolyte Composition on the Surface Characteristics of Plasma Electrolytic Oxidation Coatings over Ti–40Nb Alloy. Surf. Coat. Technol. 2023, 465, 129591. [Google Scholar] [CrossRef]
- Chen, L.; Qu, Y.; Yang, X.; Liao, B.; Xue, W.; Cheng, W. Characterization and First-Principles Calculations of WO3/TiO2 Composite Films on Titanium Prepared by Microarc Oxidation. Mater. Chem. Phys. 2017, 201, 311–322. [Google Scholar] [CrossRef]
- Santos, E.; de Souza, G.B.; Serbena, F.C.; Santos, H.L.; de Lima, G.G.; Szesz, E.M.; Lepienski, C.M.; Kuromoto, N.K. Effect of Anodizing Time on the Mechanical Properties of Porous Titania Coatings Formed by Micro-Arc Oxidation. Surf. Coat. Technol. 2017, 309, 203–211. [Google Scholar] [CrossRef]
- Roknian, M.; Fattah-alhosseini, A.; Gashti, S.O. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer’s Physiological Solution. J. Mater. Eng. Perform. 2018, 27, 1343–1351. [Google Scholar] [CrossRef]
- Vakili-Azghandi, M.; Fattah-alhosseini, A.; Keshavarz, M.K. Optimizing the Electrolyte Chemistry Parameters of PEO Coating on 6061 Al Alloy by Corrosion Rate Measurement: Response Surface Methodology. Measurement 2018, 124, 252–259. [Google Scholar] [CrossRef]
- Fattah-Alhosseini, A.; Vakili-Azghandi, M.; Keshavarz, M.K. Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 274–281. [Google Scholar] [CrossRef]
- Molaei, M.; Fattah-Alhosseini, A.; Gashti, S.O. Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium. Metall. Mater. Trans. A 2018, 49, 368–375. [Google Scholar] [CrossRef]
- Durdu, S.; Aktuǧ, S.L.; Korkmaz, K. Characterization and Mechanical Properties of the Duplex Coatings Produced on Steel by Electro-Spark Deposition and Micro-Arc Oxidation. Surf. Coat. Technol. 2013, 236, 303–308. [Google Scholar] [CrossRef]
- Khanmohammadi, H.; Allahkaram, S.R.; Igual Munoz, A.; Towhidi, N. The Influence of Current Density and Frequency on the Microstructure and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on Ti6Al4V. J. Mater. Eng. Perform. 2017, 26, 931–944. [Google Scholar] [CrossRef]
- Xu, G.; Shen, X. Fabrication of SiO2 Nanoparticles Incorporated Coating onto Titanium Substrates by the Micro Arc Oxidation to Improve the Wear Resistance. Surf. Coat. Technol. 2019, 364, 180–186. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.H.; Jung, D.-H. Surface oxidation of petroleum pitch to improve mesopore ratio and specific surface area of activated carbon. Sci. Rep. 2021, 11, 1460. [Google Scholar] [CrossRef]
- ASTM G5-14(2021); Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM G99-17; Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. ASTM: West Conshohocken, PA, USA, 2023.
- ISO 4287:1997; Geometrical Product Specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters. ISO: Geneva, Switzerland, 1997.
- Sagdoldina, Z.; Zhurerova, L.; Tyurin, Y.; Baizhan, D.; Kuykabayeba, A.; Abildinova, S.; Kozhanova, R. Modification of the Surface of 40 Kh Steel by Electrolytic Plasma Hardening. Metals 2022, 12, 2071. [Google Scholar] [CrossRef]
- Gao, B.J.Y.; Yang, W.; Xu, D.; Chen, J. Microstructure and Properties of Graphene Oxide-Doped TiO2 Coating on Titanium by Micro Arc Oxidation. J. Wuhan Univ. Technol. Sci. Ed. 2018, 33, 1524–1529. [Google Scholar] [CrossRef]
- Kantay, N.; Kasmamytov, N.; Rakhadilov, B.; Plotnikov, S.; Paszkowski, M.; Kurbanbekov, S. Influence of Temperature on Structural-Phase Changes and Physical Properties of Ceramics on the Basis of Aluminum Oxide and Silicon. Mater. Test. 2020, 62, 716–720. [Google Scholar] [CrossRef]
- Kenzhaliyev, B.; Kenzhegulov, A.; Mamaeva, A.; Panichkin, A.; Kshibekova, B.; Alibekov, Z.; Fischer, D. Tribological Characteristics of Multilayer TiN/TiCN Coatings Compared to TiN Coatings. J. Mater. Eng. Perform. 2025, 34, 25810–25819. [Google Scholar] [CrossRef]









| Ti | Fe | C | O | N | H | Si |
|---|---|---|---|---|---|---|
| 99.4 | <0.25 | <0.07 | <0.2 | <0.05 | <0.012 | <0.1 |
| Sample ID | Electrolyte Composition | Voltage, V | Frequency, Hz | Current Density, A·cm−2 | Treatment Time, min |
|---|---|---|---|---|---|
| MAO-1 | 20 g/L Na3PO4 + 10 g/L Na2SiO3 + 10 g/L NaOH | 300 | 100 | 0.043 | 20 |
| MAO-2 | 20 g/L Na3PO4 + 10 g/L Na2SiO3 + 10 g/L NaOH | 350 | 100 | 0.056 | 20 |
| Parameter | Grade 2 | MAO-1 | MAO-2 |
|---|---|---|---|
| icorr (mA·cm−2) | 0.624 ± 0.036 | 0.296 ± 0.022 | 0.256 ± 0.013 |
| CR (mm·year−1) | (5.4 ± 0.31) × 10−6 | (2.6 ± 0.15) × 10−6 | (2.2 ± 0.11) × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sulyubayeva, L.; Baizhan, D.; Berdimuratov, N.; Buitkenov, D.; Alibekova, B.; Tleubergenova, G. Influence of Voltage on the Microstructure and Tribocorrosion Properties of Porous Coatings Produced by Micro-Arc Oxidation. Coatings 2026, 16, 104. https://doi.org/10.3390/coatings16010104
Sulyubayeva L, Baizhan D, Berdimuratov N, Buitkenov D, Alibekova B, Tleubergenova G. Influence of Voltage on the Microstructure and Tribocorrosion Properties of Porous Coatings Produced by Micro-Arc Oxidation. Coatings. 2026; 16(1):104. https://doi.org/10.3390/coatings16010104
Chicago/Turabian StyleSulyubayeva, Laila, Daryn Baizhan, Nurbol Berdimuratov, Dastan Buitkenov, Balym Alibekova, and Gulim Tleubergenova. 2026. "Influence of Voltage on the Microstructure and Tribocorrosion Properties of Porous Coatings Produced by Micro-Arc Oxidation" Coatings 16, no. 1: 104. https://doi.org/10.3390/coatings16010104
APA StyleSulyubayeva, L., Baizhan, D., Berdimuratov, N., Buitkenov, D., Alibekova, B., & Tleubergenova, G. (2026). Influence of Voltage on the Microstructure and Tribocorrosion Properties of Porous Coatings Produced by Micro-Arc Oxidation. Coatings, 16(1), 104. https://doi.org/10.3390/coatings16010104

