A Comprehensive Study of Oxide Skin Formation on the Surface of Dichalcogenides and Its Effect on Sensing Properties
Abstract
1. Introduction
2. Computational Method and Construction of the Models
3. Results and Discussions
3.1. Evaluation of the Surface Stability
3.2. Effect of Oxidation on Sensing Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Yang, R.; Fan, Y.; Zhang, Y.; Mei, L.; Zhu, R.; Qin, J.; Hu, J.; Chen, Z.; Ng, Y.H.; Voiry, D.; et al. 2D Transition metal dichalcogenides for photocatalysis. Angew. Chem. 2023, 135, e202218016. [Google Scholar] [CrossRef]
- Patra, S.; Mondal, S.; Mukherjee, R.; Nandakishora, Y. Advanced synthesis and unique properties of 2D transition metal dichalcogenides for realizing next-generation applications. ACS Mater. Au 2025, 5, 745–766. [Google Scholar] [CrossRef]
- Piacentini, A.; Daus, A.; Wang, Z.; Lemme, M.C.; Neumaier, D. Potential of Transition Metal Dichalcogenide Transistors for Flexible Electronics Applications. Adv. Electr. Mater. 2023, 9, 2300181. [Google Scholar] [CrossRef]
- Yin, X.; Tang, C.S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A.T.S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115. [Google Scholar] [CrossRef] [PubMed]
- Saeloo, B.; Saisopa, T.; Chavalekvirat, P.; Iamprasertkun, P.; Jitapunkul, K.; Sirisaksoontorn, W.; Lee, T.R.; Hirunpinyopas, W. Role of transition metal dichalcogenides as a catalyst support for decorating gold nanoparticles for enhanced hydrogen evolution reaction. Inorg. Chem. 2024, 63, 18750–18762. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wang, Z.; Pan, M.; Chen, Y.; Han, Y.; Wang, J. Interface effects in metal-2D TMDs systems: Advancing the design and development electrocatalysts. Adv. Sci. 2025, 12, 2500226. [Google Scholar] [CrossRef]
- Yilmaz, E.; Yavuz, E. Use of transition metal dichalcogenides (TMDs) in analytical sample preparation applications. Talanta 2024, 266, 125086. [Google Scholar] [CrossRef]
- Sun, H.; Li, D.; Yue, X.; Hong, R.; Yang, W.; Liu, C.; Xu, H.; Lu, J.; Dong, L.; Wang, G.; et al. A review of transition metal dichalcogenides-based biosensors. Front. Bioeng. Biotechnol. 2022, 10, 941135. [Google Scholar] [CrossRef]
- Zhang, X.; Teng, S.Y.; Loy, A.C.M.; How, B.S.; Leong, W.D.; Tao, X. Transition metal dichalcogenides for the application of pollution reduction: A review. Nanomaterials 2020, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Mia, A.K.; Meyyappan, M.; Giri, P.K. Two-dimensional transition metal dichalcogenide based biosensors: From fundamentals to healthcare applications. Biosensors 2023, 13, 169. [Google Scholar] [CrossRef]
- Wang, L.; Xu, D.; Jiang, L.; Gao, J.; Tang, Z.; Xu, Y.; Chen, X.; Zhang, H. Transition metal dichalcogenides for sensing and oncotherapy: Status, challenges, and perspective. Adv. Funct. Mater. 2021, 31, 2004408. [Google Scholar] [CrossRef]
- Ping, J.; Fan, Z.; Sindoro, M.; Ying, Y.; Zhang, H. Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 2017, 27, 1605817. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, W.; Fan, S.; Zhang, J.; Liu, X. Noble-transition-metal dichalcogenides-emerging two-dimensional materials for sensor applications. Appl. Phys. Rev. 2023, 10, 031306. [Google Scholar] [CrossRef]
- Kumar, R.; Sarkar, C.; Bunekar, N.; Mishra, Y.K.; Kaushik, A. State-of-the-art transition metal dichalcogenides: Synthesis, functionalization, and biomedical applications. Mater. Today 2025, 88, 597–642. [Google Scholar] [CrossRef]
- Bozheyev, F.; Harbauer, K.; Zahn, C.; Friedrich, D.; Ellmer, K. Highly (001)-textured p-type WSe2 thin films as efficient large-area photocathodes for solar hydrogen evolution. Sci. Rep. 2017, 7, 16003. [Google Scholar] [CrossRef]
- Jo, S.S.; Singh, A.; Yang, L.; Tiwari, S.C.; Hong, S.; Krishnamoorthy, A.; Sales, M.G.; Oliver, S.M.; Fox, J.; Cavalero, R.L.; et al. Growth kinetics and atomistic mechanisms of native oxidation of ZrSxSe2–x and MoS2 crystals. Nano Lett. 2020, 20, 8592–8599. [Google Scholar] [CrossRef] [PubMed]
- D’Olimpio, G.; Genuzio, F.; Menteş, T.O.; Paolucci, V.; Kuo, C.-N.; Al Taleb, A.; Lue, C.S.; Torelli, P.; Farías, D.; Locatelli, A.; et al. Charge redistribution mechanisms in SnSe2 surfaces exposed to oxidative and humid environments and their related influence on chemical sensing. J. Phys. Chem. Lett. 2020, 11, 9003–9011. [Google Scholar] [CrossRef] [PubMed]
- Nappini, S.; Boukhvalov, D.W.; D’Olimpio, G.; Zhang, L.; Ghosh, B.; Kuo, C.-N.; Zhu, H.; Cheng, J.; Nardone, M.; Ottaviano, L.; et al. Transition-metal dichalcogenide NiTe2: An ambient-stable material for catalysis and nanoelectronics. Adv. Funct. Mater. 2020, 30, 2000915. [Google Scholar] [CrossRef]
- D’Olimpio, G.; Guo, C.; Kuo, C.-N.; Edla, R.; Lue, C.S.; Ottaviano, L.; Torelli, P.; Wang, L.; Boukhvalov, D.W.; Politano, A. PdTe2 transition-metal dichalcogenide: Chemical reactivity, thermal stability and device implementation. Adv. Funct. Mater. 2020, 30, 1906556. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Q.; Shi, L.; Chen, Q.; Wang, J. Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. J. Mater. Chem. A 2019, 7, 4291–4312. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Dong, Q.; Shen, Y.; Pan, Y.; Wang, Z.; Tang, K.; Dai, X.; Wu, R.; Jin, Y.; et al. Oxidations of two-dimensional semiconductors: Fundamentals and applications. Chin. Chem. Lett. 2022, 33, 177–185. [Google Scholar] [CrossRef]
- Kim, B.S.; Ngo, T.D.; Hassan, Y.; Chae, S.H.; Yoon, S.G.; Choi, M.S. Advances and applications of oxidized van der Waals transition metal dichalcogenides. Adv. Sci. 2024, 11, 2407175. [Google Scholar] [CrossRef]
- Edla, R.; Kuo, C.N.; Torelli, P.; Lue, C.S.; Boukhvalov, D.W.; Politano, A. Interaction of VSe2 with ambient gases: Stability and chemical reactivity. Phys. Status Solidi (RRL) 2022, 14, 1900332. [Google Scholar] [CrossRef]
- Kawai, H.; Bussolotti, F.; Khoo, K.H.; Goh, K.E.J. Propensity of oxidation of transition metal dichalcogenide monolayers in relation to physical configuration of chalcogen vacancies. Phys. Rev. B 2025, 111, 094107. [Google Scholar] [CrossRef]
- Martincová, J.; Otyepka, M.; Lazar, P. Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS2 and 1T-TaS2. 2D Mater. 2020, 7, 045005. [Google Scholar] [CrossRef]
- Liang, Q.; Gou, J.; Arramel; Zhang, Q.; Zhang, W.; Wee, A.T.S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439–3444. [Google Scholar] [CrossRef]
- Pushkarev, G.V.; Mazurenko, V.G.; Mazurenko, V.V.; Boukhvalov, D.W. Structural phase transitions in VSe2: Energetics, electronic structure and magnetism. Phys. Chem. Chem. Phys. 2019, 21, 22647–22653. [Google Scholar] [CrossRef]
- Coelho, P.M.; Lasek, K.; Nguyen Cong, K.; Li, J.; Niu, W.; Liu, W.; Oleynik, I.I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993. [Google Scholar] [CrossRef]
- Chen, X.; Shinde, S.M.; Dhakal, K.P.; Lee, S.W.; Kim, H.; Lee, Z.; Ahn, J.H. Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics. NPG Asia Mater. 2018, 10, 810–820. [Google Scholar] [CrossRef]
- Li, J.; Hu, S.; Wang, S.; Kang, H.; Chen, Z.; Zhao, S.; Yu, G. The degradation of CVD-grown MoS2 domains in atmospheric environment. Mater. Lett. 2021, 290, 129421. [Google Scholar] [CrossRef]
- Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A.; Lu, Y. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water. Sci. Rep. 2017, 7, 11182. [Google Scholar] [CrossRef]
- Wu, Z.; Tai, G.; Wang, X.; Hu, T.; Wang, R.; Guo, W. Large-area synthesis and photoelectric properties of few-layer MoSe2 on molybdenum foils. Nanotechnology 2018, 29, 125605. [Google Scholar] [CrossRef]
- Chandran, Y.; Thakur, D.; Naik, B.R.; Balakrishnan, V. Arresting the surface oxidation kinetics of bilayer 1T’-MoTe2 by sulphur passivation. Nanotechnology 2023, 34, 375702. [Google Scholar] [CrossRef]
- Zazpe, R.; Sopha, H.; Charvot, J.; Krumpolec, R.; Rodriguez-Pereira, J.; Michalička, J.; Macak, J.M. 2D MoTe2 nanosheets by atomic layer deposition: Excellent photo-electrocatalytic properties. Appl. Mat. Today 2021, 23, 101017. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Y.; Wang, X.; Liu, W.; He, J.; Luo, X.; Liu, Y. Precise construction and growth of submillimeter two-dimensional WSe2 and MoSe2 monolayers. Materials 2023, 16, 4795. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, Z.; Wan, X.; Zheng, Z.; Xie, F.; Chen, W.; Xu, J. A simple method for synthesis of high-quality millimeter-scale 1T’ transition-metal telluride and near-field nanooptical properties. Adv. Mater. 2017, 29, 1700704. [Google Scholar] [CrossRef]
- Zheng, X.; Wei, Y.; Deng, C.; Huang, H.; Yu, Y.; Wang, G.; Zhang, X. Controlled layer-by-layer oxidation of MoTe2 via O3 exposure. ACS Appl. Mater. Interfaces 2018, 10, 30045–30050. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, J.; Zhang, Y.; Hu, L.; Liu, R.; Cong, C.; Qiu, Z.J. Precise layer control of MoTe2 by ozone treatment. Nanomaterials 2019, 9, 756. [Google Scholar] [CrossRef]
- Hussain, S.; Vikraman, D.; Sarfraz, M.; Faizan, M.; Patil, S.A.; Batoo, K.M.; Nam, K.; Kim, H.; Jung, J. Design of XS2 (X= W or Mo)-Decorated VS2 hybrid nano-architectures with abundant active edge sites for high-rate asymmetric supercapacitors and hydrogen evolution reactions. Small 2023, 19, 2205881. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Yu, X.; Li, J.; Wang, K.; Niu, J. Interfacial interaction in NiFe LDH/NiS2/VS2 for enhanced electrocatalytic water splitting. Molecules 2024, 29, 951. [Google Scholar] [CrossRef]
- Wang, J.; Okabe, J.; Komine, Y.; Notohara, H.; Urita, K.; Moriguchi, I.; Wei, M. The optimized interface engineering of VS2 as cathodes for high performance all-solid-state lithium-ion battery. Sci. China Technol. Sci. 2022, 65, 1859–1866. [Google Scholar] [CrossRef]
- Xue, Z.; Feng, Y.; Lei, J.; Wu, S.; Xiong, D.; Chen, L.; Feng, Z.; Wen, K.; Li, Z.; He, M. VSe2 ultrathin nanosheets embedded in a three-dimensional N-doped carbon framework with enhanced cycling performance for sodium-ion battery. Ionics 2023, 29, 1127–1138. [Google Scholar] [CrossRef]
- Cao, Q.; Yun, F.F.; Sang, L.; Xiang, F.; Liu, G.; Wang, X. Defect introduced paramagnetism and weak localization in two-dimensional metal VSe2. Nanotechnology 2017, 28, 475703. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.; Kolekar, S.; Li, J.; Xin, Y.; Coelho, P.M.; Lasek, K.; Batzill, M. Compositional phase change of early transition metal diselenide (VSe2 and TiSe2) ultrathin films by postgrowth annealing. Adv. Mater. Interfaces 2020, 7, 2000497. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Monisha, M.; Ka, S.R.; Saxena, M.; Jeong, S.M.; Rout, C.S. Three-dimensional VTe2/MXene/CNT ternary architectures for the development of high performance microsupercapacitors. Adv. Sustain. Syst. 2025, 9, 2400529. [Google Scholar] [CrossRef]
- Hossain, M.; Iqbal, M.A.; Wu, J.; Xie, L. Chemical vapor deposition and temperature-dependent Raman characterization of two-dimensional vanadium ditelluride. RSC Adv. 2021, 11, 2624–2629. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Xie, S.; Wang, Y.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 2015, 9, 025225. [Google Scholar] [CrossRef]
- Chia, X.; Adriano, A.; Lazar, P.; Sofer, Z.; Luxa, J.; Pumera, M. Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater. 2016, 26, 4306–4318. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, X.; Su, G.; Yang, W.; Han, K.; Yu, X.; Yang, P. Large-area uniform few-layer PtS2: Synthesis, structure and physical properties. Mater. Today Phys. 2021, 18, 100376. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Li, X.; Liu, M.; Cui, T.; Fu, H.; Yue, W. PEG-PtS2 nanosheet-based fluorescence biosensor for label-free human papillomavirus genotyping. Microchim. Acta 2020, 187, 408. [Google Scholar] [CrossRef]
- Mirabelli, G.; Walsh, L.A.; Gity, F.; Bhattacharjee, S.; Cullen, C.P.; Coileáin, C.Ó.; Duffy, R. Effects of annealing temperature and ambient on metal/PtSe2 contact alloy formation. ACS Omega 2019, 4, 17487–17493. [Google Scholar] [CrossRef]
- Li, J.; Kolekar, S.; Ghorbani-Asl, M.; Lehnert, T.; Biskupek, J.; Kaiser, U.; Batzill, M. Layer-dependent band gaps of platinum dichalcogenides. ACS Nano 2021, 15, 13249–13259. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 2009, 30, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- CRC Handbook of Chemistry and Physics, 86th ed.; Lide, D.R., Ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Kumar, R.; Zheng, W.; Liu, X.; Zhang, J.; Kumar, M. MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Tech. 2020, 5, 1901062. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Jeong, S.; Youn, J.-S.; Ahn, S.; Nam, K.-H.; Park, C.-M.; Jeon, K.-J. Insight into mechanism of temperature-dependent limit of NO2 detection using monolayer MoS2. Sens. Actuators B Chem. 2021, 329, 129138. [Google Scholar] [CrossRef]
- Wang, J.; Zeng, W.; Zhou, Q. Research status of gas sensing performance of MoTe2-based gas sensors: A mini review. Front. Chem. 2022, 10, 950974. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.H.; Li, P.L.; Xiong, Z.Z. Research status of MoSe2 and its composites: A review. Superlattices Microstruct. 2020, 139, 106388. [Google Scholar] [CrossRef]
- Xu, H.; Huang, H.-P.; Fei, H.; Feng, J.; Fuh, H.-R.; Cho, J.; Choi, M.; Chen, Y.; Zhang, L.; Chen, D.; et al. Strategy for fabricating wafer-scale platinum disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8202–8209. [Google Scholar] [CrossRef] [PubMed]
- Su, T.-Y.; Chen, Y.-Z.; Wang, Y.-C.; Tang, S.-Y.; Shih, Y.-C.; Cheng, F.; Wang, Z.M.; Lin, H.-N.; Chueh, Y.-L. Highly sensitive, selective and stable NO2 gas sensors with a ppb-level detection limit on 2D-platinum diselenide films. J. Mater. Chem. C 2020, 8, 4851–4858. [Google Scholar] [CrossRef]
- Wang, Z.; Jing, X.; Duan, S.; Liu, C.; Kang, D.; Xu, X.; Chen, J.; Xia, Y.; Chang, B.; Zhao, C.; et al. 2D PtSe2 enabled wireless wearable gas monitoring circuits with distinctive strain-enhanced performance. ACS Nano 2023, 17, 11557–11566. [Google Scholar] [CrossRef]
- Boukhvalov, D.W.; D’OLimpio, G.; Dadiani, T.; Sharma, J.; Elameen, A.A.A.; Zenone, S.; Rosmus, M.; Gürbulak, B.; Çepni, E.; Llobet, E.; et al. Self-assembled gallium sulfide (GaS) heterostructures enabling efficient water splitting and ultrasensitive chemical sensing. Adv. Funct. Mater. 2025; early review. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, Y.S.; Kim, D.J. Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 2018, 3, 2045–2060. [Google Scholar] [CrossRef]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira Jr, O.N.; Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213. [Google Scholar] [CrossRef] [PubMed]
A | X | E(1T)−E(2H), kJ unit−1 | |
---|---|---|---|
AB2 | AB2/AO2 | ||
V | S Se Te | +2.2 −2.5 −68.2 | +1.2 −51.2 −166.4 |
Mo | S Se Te | +76.2 +51.1 +25.4 | +54.5 +32.5 +9.8 |
Pt | S Se Te | −6.1 −144.5 −108.2 | −118.7 −70.2 −36.4 |
A | X | Configuration | dH(O2)ads | dH(NO2)ads | dE(O2)dec |
---|---|---|---|---|---|
V | S | 1T 2H | −97.0 (−98.5) −109.6 (−115.3) | −4.7 (−46.9) −44.1 (−139.6) | −103.2 −140.3 |
Se | 1T 2H | −51.4 (−94.1) −37.8 (−350.1) | −66.3 (−380.6) −39.5 (−27.9) | +128.9 +99.3 | |
Te | 1T 2H | −109.8 (−96.3) −108.6 (−83.1) | −135.8 (−243.8) −72.0 (−22.5) | +6.5 −177.0 | |
Mo | S | 1T 2H | −128.1 (−38.5) −64.3 (−73.9) | −82.2 (−25.6) −180.5 (−100.6) | −209.0 +42.0 |
Se | 1T 2H | −65.7 (−84.9) −127.4 (−148.4) | +6.5 (−291.6) −195.2 (−100.5) | +11.3 +189.4 | |
Te | 1T 2H | −39.7 (−42.2) −55.6 (−36.9) | −69.8 (−81.1) −70.5 (−176.1) | −10.5 −52.7 | |
Pt | S | 1T 2H | −8.6 (+24.8) +13.60 (−3.8) | +7.1 (−79.3) +27.5 (−49.7) | −152.9 −171.6 |
Se | 1T 2H | +5.15 (−21.2) +35.2 (−17.1) | −3.65 (−343.5) −75.1 (−70.4) | +5.8 −369.7 | |
Te | 1T 2H | +55.2 (+73.3) −9.5 (−11.3) | −40.3 (−129.3) −51.0 (−121.3) | −28.5 −251.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shongalova, A.; Boukhvalov, D.W.; Serikkanov, A.S.; Chuchvaga, N.A. A Comprehensive Study of Oxide Skin Formation on the Surface of Dichalcogenides and Its Effect on Sensing Properties. Coatings 2025, 15, 1108. https://doi.org/10.3390/coatings15091108
Shongalova A, Boukhvalov DW, Serikkanov AS, Chuchvaga NA. A Comprehensive Study of Oxide Skin Formation on the Surface of Dichalcogenides and Its Effect on Sensing Properties. Coatings. 2025; 15(9):1108. https://doi.org/10.3390/coatings15091108
Chicago/Turabian StyleShongalova, Aigul, Danil W. Boukhvalov, Abay S. Serikkanov, and Nikolay A. Chuchvaga. 2025. "A Comprehensive Study of Oxide Skin Formation on the Surface of Dichalcogenides and Its Effect on Sensing Properties" Coatings 15, no. 9: 1108. https://doi.org/10.3390/coatings15091108
APA StyleShongalova, A., Boukhvalov, D. W., Serikkanov, A. S., & Chuchvaga, N. A. (2025). A Comprehensive Study of Oxide Skin Formation on the Surface of Dichalcogenides and Its Effect on Sensing Properties. Coatings, 15(9), 1108. https://doi.org/10.3390/coatings15091108