Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment
Abstract
1. Introduction
2. Materials and Methods
- Driving and Braking Simulation System—Simulates vehicle dynamics and enables temperature and rotational speed measurements.
- Corrosion Salt Spray—Applies corrosive conditions to the brake discs.
- Damp Heat Chamber—Subjects the samples to cyclic high humidity and temperature.
- Storage of the Same Brake Disc—Following the completion of the test sequence, the brake disc was stored at ambient room temperature for a duration of 20 h.
- Sample preparation—Two discs were selected for metallographic analysis: one that underwent the full brake shock corrosion test and one reference disc that was not exposed to the test sequence. Specimens were extracted from both discs.
- Microstructural characterization.
3. Results
3.1. Microstructural Analysis of 316L Powder
3.2. Microstructural Analysis of the First and Second Layer Without and with the Brake Test
3.3. Evaluation of the Grain Size During the Brake Test
3.4. Pole Figures and Texture Analysis
3.5. Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Franke, S. Gießerei Lexikon, 13th ed.; Schiele & Schön: Berlin, Germany, 2019. [Google Scholar]
- Weißbach, W.; Dahms, M.; Jaroschek, C. Werkstoffe und Ihre Anwendungen; Springer Vieweg Wiesbaden: Wiesbaden, Germany, 2005; ISBN 978-3-658-19892-3. [Google Scholar]
- Masafi, M.; Palkowski, H.; Mozaffari-Jovein, H. Micro-Friction Mechanism Characterization of Particle-Reinforced Multilayer Systems of 316L and 430L Alloys on Grey Cast Iron. J. Mater. Res. Technol. 2024, 33, 6090–6101. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, L.; Guo, X.; Kane, S.; Deng, Y.; Jung, Y.-G.; Lee, J.-H.; Zhang, J. Additive Manufacturing of Metallic Materials: A Review. J. Mater. Eng. Perform. 2018, 27, 1–13. [Google Scholar] [CrossRef]
- Ascari, A.; Lutey, A.H.A.; Liverani, E.; Fortunato, A. Laser Directed Energy Deposition of Bulk 316L Stainless Steel. Lasers Manuf. Mater. Process. 2020, 7, 426–448. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Ji, I.; Lee, S.H. Numerical and Experimental Investigations of Laser Metal Deposition (LMD) Using STS 316L. Appl. Sci. 2020, 10, 4874. [Google Scholar] [CrossRef]
- Badoniya, P.; Srivastava, M.; Jain, P.K.; Rathee, S. A State-of-the-Art Review on Metal Additive Manufacturing: Milestones, Trends, Challenges and Perspectives. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 339. [Google Scholar] [CrossRef]
- Masafi, M.; Palkowski, H.; Mozaffari-Jovein, H. Microstructural Properties of Particle-Reinforced Multilayer Systems of 316L and 430L Alloys on Gray Cast Iron. Coatings 2023, 13, 1450. [Google Scholar] [CrossRef]
- Aversa, A.; Marchese, G.; Bassini, E. Directed Energy Deposition of AISI 316L Stainless Steel Powder: Effect of Process Parameters. Metals 2021, 11, 932. [Google Scholar] [CrossRef]
- Krakhmalev, P.; Fredriksson, G.; Svensson, K.; Yadroitsev, I.; Yadroitsava, I.; Thuvander, M.; Peng, R. Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion. Metals 2018, 8, 643. [Google Scholar] [CrossRef]
- Hagihara, K.; Nakano, T. Control of Anisotropic Crystallographic Texture in Powder Bed Fusion Additive Manufacturing of Metals and Ceramics—A Review. JOM 2022, 74, 1760–1773. [Google Scholar] [CrossRef]
- DeNonno, O.; Saville, A.; Benzing, J.; Klemm-Toole, J.; Yu, Z. Solidification Behavior and Texture of 316L Austenitic Stainless Steel by Laser Wire Directed Energy Deposition. Mater. Charact. 2024, 211, 113916. [Google Scholar] [CrossRef]
- Kuzminova, Y.O.; Evlashin, S.A.; Belyakov, A.N. On the Texture and Strength of a 316L Steel Processed by Powder Bed Fusion. Mater. Sci. Eng. A 2024, 913, 147026. [Google Scholar] [CrossRef]
- Yuan, R. Effects of Grain Size, Texture and Grain Growth Capacity Gradients on the Deformation Mechanisms and Mechanical Properties of Gradient Nanostructured Nickel. Acta Mech. 2023, 234, 4147–4181. [Google Scholar] [CrossRef]
- Lita, A.E.; Sanchez, J.E. Effects of Grain Growth on Dynamic Surface Scaling during the Deposition of Al Polycrystalline Thin Films. Phys. Rev. B 2000, 61, 7692–7699. [Google Scholar] [CrossRef]
- Alemani, M.; Nosko, O.; Metinoz, I.; Olofsson, U. A Study on Emission of Airborne Wear Particles from Car Brake Friction Pairs. SAE Int. J. Mater. Manuf. 2015, 9, 147–157. [Google Scholar] [CrossRef]
- Xia, X.; Wu, J.; Liu, Z.; Ma, J.; Ji, H. EBSD Analysis of 316L Stainless Steel Weldment on Fusion Reactor Vacuum Vessel. Trans. Indian Inst. Met. 2023, 76, 3379–3391. [Google Scholar] [CrossRef]
- Shamsujjoha, M.; Agnew, S.R.; Fitz-Gerald, J.M.; Moore, W.R.; Newman, T.A. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained. Metall. Mater. Trans. A 2018, 49, 3011–3027. [Google Scholar] [CrossRef]
- Bayode, A.; Akinlabi, E.T.; Pityana, S. Characterization of Laser Metal Deposited 316L Stainless Steel. In Proceedings of the World Congress on Engineering 2016, Imperial College, London, London, UK, 29 June–1 July 2016; Ao, S.-I., Gelman, L., Hukins, D.W.L., Eds.; Newswood Limited: Hong Kong, China, 2016; Volume II, ISBN 978-988-14048-0-0. ISSN 2078-0958 (Print), 2078-0966 (Online). [Google Scholar]
- Sun, Z.; Retraint, D.; Baudin, T.; Helbert, A.L.; Brisset, F.; Chemkhi, M.; Zhou, J.; Kanouté, P. Experimental Study of Microstructure Changes Due to Low Cycle Fatigue of a Steel Nanocrystallised by Surface Mechanical Attrition Treatment (SMAT). Mater. Charact. 2017, 124, 117–121. [Google Scholar] [CrossRef]
- Vaz, R.F.; Silvello, A.; Sanchez, J.; Albaladejo, V.; Cano, I.G. The Influence of the Powder Characteristics on 316L Stainless Steel Coatings Sprayed by Cold Gas Spray. Coatings 2021, 11, 168. [Google Scholar] [CrossRef]
- Yan, J.; Zhou, Y.; Gu, R.; Zhang, X.; Quach, W.-M.; Yan, M. A Comprehensive Study of Steel Powders (316L, H13, P20 and 18Ni300) for Their Selective Laser Melting Additive Manufacturing. Metals 2019, 9, 86. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Ma, C.; Hai, X.; Song, K. 316L Austenitic Stainless Steel Deformation Organization and Nitriding-Strengthened Layer Relationships. Appl. Sci. 2025, 15, 2352. [Google Scholar] [CrossRef]
- Shi, H.-J.; Wang, Z.-G.; Su, H.-H. Thermomechanical Fatigue of a 316L Austenittc Steel at Two Different Temperature Intervals. Scr. Mater. 1996, 35, 1107–1113. [Google Scholar] [CrossRef]
- Galgon, F.; Melzer, D.; Zenk, C.; Džugan, J.; Körner, C. Miniature Mechanical Testing of LMD-Fabricated Compositionally & Microstructurally Graded γ Titanium Aluminides. J. Mater. Res. 2022, 37, 4312–4325. [Google Scholar] [CrossRef]
- Proust, G.; Retraint, D.; Chemkhi, M.; Roos, A.; Demangel, C. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding. Microsc. Microanal. 2015, 21, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Proust, G.; Trimby, P.; Piazolo, S.; Retraint, D. Characterization of Ultra-Fine Grained and Nanocrystalline Materials Using Transmission Kikuchi Diffraction. J. Vis. Exp. 2017, 122, 55506. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Dai, J.; Huang, Z.; Meng, T. Grain Growth of Ni-Based Superalloy IN718 Coating Fabricated by Pulsed Laser Deposition. Opt. Laser Technol. 2016, 80, 220–226. [Google Scholar] [CrossRef]
- Wang, Z.; Palmer, T.A.; Beese, A.M. Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing. Acta Mater. 2016, 110, 226–235. [Google Scholar] [CrossRef]
- Liu, W.; Hu, G.; Yan, Z.; Liu, B.; Wang, T.; Lyu, Z. Thermal Effect on Microstructure and Mechanical Properties in Directed Energy Deposition of AISI 316L. Int. J. Adv. Manuf. Technol. 2024, 134, 3337–3353. [Google Scholar] [CrossRef]
- Petroušek, P.; Kvačkaj, T.; Bidulská, J.; Bidulský, R.; Grande, M.A.; Manfredi, D.; Weiss, K.-P.; Kočiško, R.; Lupták, M.; Pokorný, I. Investigation of the Properties of 316L Stainless Steel after AM and Heat Treatment. Materials 2023, 16, 3935. [Google Scholar] [CrossRef]
- Vlasov, I.; Gordienko, A.; Kuznetsova, A.; Semenchuk, V. Effects of Heat Input and Thermal Cycling on the Microstructure and Mechanical Properties of Steel Walls Built by Wire-Arc Additive Manufacturing. Metallogr. Microstruct. Anal. 2025, 14, 229–244. [Google Scholar] [CrossRef]
- Di Schino, A.; Kenny, J.M.; Abbruzzese, G. Analysis of the Recrystallization and Grain Growth Processes in AISI 316 Stainless Steel. J. Mater. Sci. 2002, 37, 5291–5298. [Google Scholar] [CrossRef]
- Duff, W.H.; Zhigilei, L.V. Computational Study of Cooling Rates and Recrystallization Kinetics in Short Pulse Laser Quenching of Metal Targets. J. Phys. Conf. Ser. 2007, 59, 413–417. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Guo, Y.; Zhang, Q.; Wang, L.; Yao, J.; Kovalenko, V. Dendritic Growth Transition During Laser Rapid Solidification of Nickel-Based Superalloy. JOM 2021, 73, 1538–1545. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Zhang, C.H.; Wu, C.; Wang, J.; Chen, J.; Sun, Z. Microstructure Evolution and EBSD Analysis of a Graded Steel Fabricated by Laser Additive Manufacturing. Vacuum 2017, 141, 68–81. [Google Scholar] [CrossRef]
- Yan, Y.; Feng, L.; Zhang, K.; Wen, J. Influence of Temperature on Creep Behavior of Ag Particle Enhancement SnCu Based Composite Solder. Tsinghua Sci. Technol. 2007, 12, 296–301. [Google Scholar] [CrossRef]
- Mokadem, S.; Bezençon, C.; Hauert, A.; Jacot, A.; Kurz, W. Laser Repair of Superalloy Single Crystals with Varying Substrate Orientations. Metall. Mater. Trans. A 2007, 38, 1500–1510. [Google Scholar] [CrossRef]
- Rojas Dorantes, C.A.; Czekanski, A. Compaction Effects on the Thermal Properties of Stainless Steel 316L Powders in 3D Printing Processes. Int. J. Adv. Manuf. Technol. 2025, 137, 3877–3886. [Google Scholar] [CrossRef]
- Chen, B.; Bai, Y.; Tao, H.; Fu, Q.; Xiong, L.; Weng, J.; Wang, S.; Zhao, H.; Han, Y.; Ding, J. Anisotropic Optoelectronic Properties of MAPbI3 on (100), (112) and (001) Facets. J. Electron. Mater. 2021, 50, 6881–6887. [Google Scholar] [CrossRef]
- Drory, M.D.; Hutchinson, J.W. Measurement of the Adhesion of a Brittle Film on a Ductile Substrate by Indentation. Proc. R. Soc. Lond. 1996, 452, 2319–2341. [Google Scholar]
- Mohanty, R.; Khan, A.R. Challenges During Scale-up in Wurster Coating. Int. J. Creat. Res. Thoughts 2020, 8, 2071–2078. [Google Scholar]
- Byun, T.S.; Lach, T.G. Mechanical Properties of 304L and 316L Austenitic Stainless Steels after Thermal Aging for 1500 Hours Cast Stainless Steel Aging (LW-16OR040215); U.S. Department of Energy: Washington, DC, USA, 2016. [Google Scholar]
- Zhi, H.R.; Zhao, H.T.; Zhang, Y.F.; Dampilon, B. Microstructure and Crystallographic Texture of Direct Energy Deposition Printed 316L Stainless Steel. Dig. J. Nanomater. Biostruct. 2023, 18, 1293–1303. [Google Scholar] [CrossRef]
- Luecke, W.E.; Slotwinski, J.A. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 398–418. [Google Scholar] [CrossRef]
- Hanbury, R.D.; Was, G.S. Effect of Grain Orientation on Irradiation Assisted Corrosion of 316L Stainless Steel in Simulated PWR Primary Water. In Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, Boston, MA, USA, 18–22 August 2019; pp. 2303–2312. [Google Scholar]
- Li, Q. Anisotropic Mechanical Properties of 2-D Materials. In Plastic Deformation in Materials [Working Title]; IntechOpen: London, UK, 2021. [Google Scholar]
- Jacek, J.; Skrzypek, A.W.G. Mechanics of Anisotropic Materials; Skrzypek, J.J., Ganczarski, A.W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-17159-3. [Google Scholar]
- Jang, W.-L.; Wang, T.-S.; Lai, Y.-F.; Lin, K.-L.; Lai, Y.-S. The Performance and Fracture Mechanism of Solder Joints under Mechanical Reliability Test. Microelectron. Reliab. 2012, 52, 1428–1434. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Volek, A.; Green, N.R. Mechanism of Competitive Grain Growth in Directional Solidification of a Nickel-Base Superalloy. Acta Mater. 2008, 56, 2631–2637. [Google Scholar] [CrossRef]
- Sun, Z.; Tsai, S.-P.; Konijnenberg, P.; Wang, J.-Y.; Zaefferer, S. A Large-Volume 3D EBSD Study on Additively Manufactured 316L Stainless Steel. Scr. Mater. 2024, 238, 115723. [Google Scholar] [CrossRef]
- Guo, C.; Takaki, T.; Sakane, S.; Ohno, M.; Shibuta, Y.; Mohri, T. Overgrowth Behavior at Converging Grain Boundaries during Competitive Grain Growth: A Two-Dimensional Phase-Field Study. Int. J. Heat. Mass. Transf. 2020, 160, 120196. [Google Scholar] [CrossRef]
- Naik, S.N.; Walley, S.M. The Hall–Petch and Inverse Hall–Petch Relations and the Hardness of Nanocrystalline Metals. J. Mater. Sci. 2020, 55, 2661–2681. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, D.; Tian, L.; Chen, K. Effect of WC Particle Addition on the Wear Resistance of FeCoNiAlTi Coatings. J. Mater. Eng. Perform. 2024, 34, 18367–18377. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, Y.; Lai, X.; Zheng, X.; Jia, R.; Yuan, X. Influence of Different Heat Treatment Temperatures on the Microstructure, Corrosion, and Mechanical Properties Behavior of Fe-Based Amorphous/Nanocrystalline Coatings. Coatings 2019, 9, 858. [Google Scholar] [CrossRef]
- Nastac, M.; Lucas, R.; Klein, A. Microstructure and Mechanical Properties Comparison of 316L Parts Produced by Different Additive Manufacturing Processes; University of Texas at Austin: Austin, TX, USA, 2017. [Google Scholar]
- Radhamani, A.V.; Lau, H.C.; Ramakrishna, S. 316L Stainless Steel Microstructural, Mechanical, and Corrosion Behavior: A Comparison Between Spark Plasma Sintering, Laser Metal Deposition, and Cold Spray. J. Mater. Eng. Perform. 2021, 30, 3492–3501. [Google Scholar] [CrossRef]
- Fonda, R.W.; Rowenhorst, D.J.; Feng, C.R.; Levinson, A.J.; Knipling, K.E.; Olig, S.; Ntiros, A.; Stiles, B.; Rayne, R. The Effects of Post-Processing in Additively Manufactured 316L Stainless Steels. Metall. Mater. Trans. A 2020, 51, 6560–6573. [Google Scholar] [CrossRef]
- Dolzhenko, P.; Tikhonova, M.; Odnobokova, M.; Kaibyshev, R.; Belyakov, A. On Grain Boundary Engineering for a 316L Austenitic Stainless Steel. Metals 2022, 12, 2185. [Google Scholar] [CrossRef]
- Chen, P.; Jin, K.; Liu, X.; Qiao, X.; Yang, W. Tribological Performance of Textured 316L Stainless Steel Prepared by Selective Laser Melting. J. Mater. Eng. Perform. 2025, 34, 461–472. [Google Scholar] [CrossRef]
- Hassine, N.; Chatti, S.; Kolsi, L. Tailoring Grain Structure Including Grain Size Distribution, Morphology, and Orientation via Building Parameters on 316L Parts Produced by Laser Powder Bed Fusion. Int. J. Adv. Manuf. Technol. 2024, 131, 4483–4498. [Google Scholar] [CrossRef]
- He, Q.; Xia, S.; Bai, Q.; Zhang, Y.; Li, L. The Recrystallization Nucleation Mechanism for a Low-Level Strained 316L Stainless Steel and Its Implication to Twin-Induced Grain Boundary Engineering. Metall. Mater. Trans. A 2024, 55, 4525–4542. [Google Scholar] [CrossRef]
- Nalepka, K.; Skoczeń, B.; Ciepielowska, M.; Schmidt, R.; Tabin, J.; Schmidt, E.; Zwolińska-Faryj, W.; Chulist, R. Phase Transformation in 316L Austenitic Steel Induced by Fracture at Cryogenic Temperatures: Experiment and Modelling. Materials 2020, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.-P.; Tan, Z.-H.; Lv, J.-L.; Zhang, S.-Y.; Liu, D. Effect of Annealing and Strain Rate on the Microstructure and Mechanical Properties of Austenitic Stainless Steel 316L Manufactured by Selective Laser Melting. Adv. Manuf. 2024, 13, 634–654. [Google Scholar] [CrossRef]
- Cui, L.; Jiang, F.; Deng, D.; Xin, T.; Sun, X.; Mousavian, R.T.; Peng, R.L.; Yang, Z.; Moverare, J. Cyclic Response of Additive Manufactured 316L Stainless Steel: The Role of Cell Structures. Scr. Mater. 2021, 205, 114190. [Google Scholar] [CrossRef]
- Mirkoohi, E.; Sievers, D.E.; Garmestani, H.; Liang, S.Y. Thermo-Mechanical Modeling of Thermal Stress in Metal Additive Manufacturing Considering Elastoplastic Hardening. CIRP J. Manuf. Sci. Technol. 2020, 28, 52–67. [Google Scholar] [CrossRef]
- Verma, P.C.; Saurabh, A.; Manoj, A.; Saravanan, P.; Sarraf, S.; Tiwari, S.K. Wear Debris from Automotive Brake Pad-Disc System: A Critical Review and Future Prospects. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2025. [Google Scholar] [CrossRef]
- Wahlström, J.; Lyu, Y.; Matjeka, V.; Söderberg, A. A Pin-on-Disc Tribometer Study of Disc Brake Contact Pairs with Respect to Wear and Airborne Particle Emissions. Wear 2017, 384–385, 124–130. [Google Scholar] [CrossRef]
Element [wt.%] | GJL 150 | 316L |
---|---|---|
C | 3.50 ± 0.1 | 0.01 |
Si | 2.00 ± 0.1 | 0.80 |
Mn | 0.60 ± 0.05 | 1.50 |
P | <0.10 ± 0.02 | - |
S | <0.08 ± 0.02 | <0.01 |
Cu | 0.20 ± 0.02 | 0.00 |
Cr | 0.20 ± 0.02 | 17.00 |
Mo | 0.35 ± 0.1 | 2.50 |
Ni | <0.20 | 12.00 |
Sn | <0.10 | - |
N | - | - |
Fe | Balance | Balance |
Sample | Substrate | First Layer | Second Layer | Hard Particles | Sample Condition |
---|---|---|---|---|---|
1 | - | - | - | - | Powder 316L |
2 | GJL | 316L | 316L | Spherical WC | without brake shock corrosion test |
3 | GJL | 316L | 316L | Spherical WC | with brake shock corrosion test |
Sample(S)_Position: Material | Hardness HV 0.3 | Standard Deviation | Hardness HBW 5/750 | Standard Deviation | Wedge Compression Strength Rm (MPa) | Standard Deviation |
---|---|---|---|---|---|---|
S2_Substrate: GJL | 244 | 16 | 179 | 8 | 139 | 3 |
S3_Substrate: GJL | 245 | 16 | 184 | 8 | 143 | 3 |
S2_First coating layer: 316L | 232 | 7 | ||||
S3_First coating layer: 316L | 223 | 7 | ||||
S2_Second coating layer: 316L _WC | 478 | 30 | ||||
S3_Second coating layer: 316L _WC | 432 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masafi, M.; Conzelmann, A.; Palkowski, H.; Mozaffari-Jovein, H. Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment. Coatings 2025, 15, 1106. https://doi.org/10.3390/coatings15091106
Masafi M, Conzelmann A, Palkowski H, Mozaffari-Jovein H. Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment. Coatings. 2025; 15(9):1106. https://doi.org/10.3390/coatings15091106
Chicago/Turabian StyleMasafi, Mohammad, Achim Conzelmann, Heinz Palkowski, and Hadi Mozaffari-Jovein. 2025. "Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment" Coatings 15, no. 9: 1106. https://doi.org/10.3390/coatings15091106
APA StyleMasafi, M., Conzelmann, A., Palkowski, H., & Mozaffari-Jovein, H. (2025). Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment. Coatings, 15(9), 1106. https://doi.org/10.3390/coatings15091106