Chemical Deposition Method for Preparing VO2@AlF3 Core–Shell-Structured Nanospheres for Smart Temperature-Control Coating
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. One-Step Hydrothermal Method to Synthesize VO2 Nanopowder
2.3. Chemical Deposition to Synthesize the VO2@AlF3 Core–Shell Structure
2.4. Characterization
3. Results and Discussion
3.1. Phase and Composition Analysis of VO2@AlF3 Core–Shell-Structured Powders
3.2. Surface Morphology and Structural Analysis of the VO2@AlF3 Core–Shell-Structured Powder
3.3. VO2@AlF3 Core–Shell Powder Phase Transition Temperature
3.4. Analysis of the Optical Properties of VO2@AlF3 Thin Films
3.5. VO2@AlF3 Core–Shell Structure Powder Oxidation Stability Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Granqvist, C.G. Window Coatings for The Future. Thin Solid Film. 1990, 193, 730–741. [Google Scholar] [CrossRef]
- Odineca, T.; Borodinecs, A.; Korjakins, A.; Zajecs, D. The Impacts of the Exterior Glazed Structures and Orientation on the Energy Consumption of the Building. IOP Conf. Ser. Earth Environ. Sci. 2019, 290, 012105. [Google Scholar] [CrossRef]
- Feng, Y.Q.; Lv, M.L.; Yang, M.; Ma, W.X.; Zhang, G.; Yu, Y.Z.; Wu, Y.Q.; Li, H.B.; Liu, D.Z.; Yang, Y.S. Application of New Energy Thermochromic Composite Thermosensitive Materials of Smart Windows in Recent Years. Molecules 2022, 27, 1638. [Google Scholar]
- Morin, F.J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34–36. [Google Scholar]
- Xu , T.; Liu , K.; Sheng , N.; Zhang, M.; Liu, W.; Liu, H.; Dai, L.; Zhang, X.; Si, C.; Du, H.; et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater. 2022, 48, 244–262. [Google Scholar]
- Wang, Q.; He, S.; Bowen, C.R.; Xiao, X.; Oh, J.A.S.; Sun, J.; Zeng, K.; Lei, W.; Chen, J. Porous pyroelectric ceramic with carbon nanotubes for high performance thermal to electrical energy conversion. Nano Energy 2022, 102, 107703. [Google Scholar] [CrossRef]
- Cui, Y.; Ke, Y.; Liu, C.; Chen, Z.; Wang, N.; Zhang, L.; Zhou, Y.; Wang, S.; Gao, Y.; Long, Y. Thermochromic VO2 for Energy-Efficient Smart Windows. Joule 2018, 2, 1707–1746. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, S.; Liu, G.; Li, M.; White, T.J.; Long, Y. Vanadium Dioxide: The Multistimuli Responsive Material and Its Applications. Small 2018, 14, e1802025. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, T.; Meng, Y.; Yang, R.; Tan, G.; Long, Y. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 2021, 374, 1501–1504. [Google Scholar] [CrossRef]
- Tang, K.; Dong, K.; Li, J.; Gordon, M.P.; Reichertz, F.G.; Kim, H.; Rho, Y.; Wang, Q.; Lin, C.-Y.; Grigoropoulos, C.P.; et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 2021, 374, 1504–1509. [Google Scholar] [CrossRef]
- Jiang, M.; Cao, X.; Bao, S.; Zhou, H.; Jin, P. Regulation of the phase transition temperature of VO2 thin films deposited by reactive magnetron sputtering without doping. Thin Solid Film. 2014, 562, 314–318. [Google Scholar] [CrossRef]
- Zou, J.; Xiao, L.; Zhu, L.; Chen, X. One-step rapid hydrothermal synthesis of monoclinic VO2 nanoparticles with high precursors concentration. J. Sol-Gel Sci. Technol. 2019, 91, 302–309. [Google Scholar] [CrossRef]
- He, X.; Gu, C.; Chen, F.; Xu, X. Vanadium dioxide thin films for smart windows: Optical design and performance improvement. Proc. Int. Soc. Opt. Eng. 2013, 9068, 76–81. [Google Scholar]
- Wang, S.; Liu, M.; Kong, L.; Long, Y.; Jiang, X.; Yu, A. Recent progress in VO2 smart coatings: Strategies to improve the thermochromic properties. Prog. Mater. Sci. 2016, 84, 1–54. [Google Scholar] [CrossRef]
- Tazawa, M.; Asada, H.; Xu, G.; Jin, P.; Yoshimura, K. Optical constants of vanadium dioxide films and design of a solar energy control window. MRS Online Proc. Libr. Arch. 2011, 785, 556–562. [Google Scholar] [CrossRef]
- Ji, Y.-X.; Li, S.-Y.; Niklasson, G.A.; Granqvist, C.G. Durability of thermochromic VO2 thin films under heating and humidity: Effect of Al oxide top coatings. Thin Solid Film. 2014, 562, 568–573. [Google Scholar] [CrossRef]
- Long, S.; Zhou, H.; Bao, S.; Xin, Y.; Cao, X.; Jin, P. Thermochromic multilayer films of WO3/VO2/WO3 sandwich structure with enhanced luminous transmittance and durability. RSC Adv. 2016, 6, 35–42. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Yang, C.; Jia, H.; Cui, X.; Zhao, S.; Xu, Y. Mesoporous SiO2/VO2 double-layer thermochromic coating with improved visible transmittance for smart window. Sol. Energy Mater. Sol. Cells 2017, 162, 134–141. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Y.; Wang, B.; Zheng, J.; Ji, S.; Yao, H.; Luo, H.; Jin, P. Vanadium dioxide nanoparticle-based thermochromic smart coating: High luminous transmittance, excellent solar regulation efficiency and near room temperature phase transition. ACS Appl. Mater. Interfaces 2015, 7, 796–803. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, S.; Luo, H.; Dai, L.; Cao, C.; Liu, Y.; Chen, Z.; Kanehira, M. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible VO2-based composite foils with excellent thermochromic properties for solar heat control. Energy Environ. Sci. 2012, 5, 3–19. [Google Scholar] [CrossRef]
- Tong, K.; Li, R.; Zhu, J.; Yao, H.; Zhou, H.; Zeng, X.; Ji, S.; Jin, P. Preparation of VO2/Al-O core-shell structure with enhanced weathering resistance for smart window. Ceram. Int. 2017, 43, 4055–4061. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, X.; Zhu, J.; Li, R.; Yao, H.; Cao, X.; Ji, S.; Jin, P. High Performance and Enhanced Durability of Thermochromic Films Using VO2@ZnO Core–Shell Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 27784–27791. [Google Scholar] [CrossRef]
- Chang, T.; Cao, X.; Long, Y.; Luo, H.; Jin, P. How to properly evaluate and compare the thermochromic performance of VO2-based smart coatings. J. Mater. Chem. A 2019, 7, 24164–24172. [Google Scholar] [CrossRef]
- Wright, W.D. Color Science, Concepts and Methods. Quantitative Data and Formulas. Phys. Bull. 1967, 18, 353. [Google Scholar] [CrossRef]
- Jessen, W.; Wilbert, S.; Gueymard, C.A.; Polo, J.; Bian, Z.; Driesse, A.; Habte, A.; Marzo, A.; Armstrong, P.R.; Vignola, F.; et al. Proposal and evaluation of subordinate standard solar irradiance spectra for applications in solar energy systems. Sol. Energy 2018, 168, 30–43. [Google Scholar] [CrossRef]
- Luo, Z.; Lei, W.; Wang, X.; Pan, J.; Pan, Y.; Xia, S. AlF3 coating as sulfur immobilizers in cathode material for high performance lithium-sulfur batteries. J. Alloys Compd. 2020, 812, 152132. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Li, X.; Chen, G.; Zhang, B.; Liu, H.; Wang, Y.; Ma, Z.-F. Construction of AlF3 layer to improve Na3.12Fe2.44(P2O7)2 interfacial stability for high temperature stable cycling. Chem. Eng. J. 2022, 430, 132708. [Google Scholar] [CrossRef]
- Zhou, H.; Li, J.; Bao, S.; Li, J.; Liu, X.; Jin, P. Use of ZnO as antireflective, protective, antibacterial, and biocompatible multifunction nanolayer of thermochromic VO2 nanofilm for intelligent windows. Appl. Surf. Sci. 2016, 363, 532–542. [Google Scholar] [CrossRef]
- Wang, M.; Tian, J.; Zhang, H.; Shi, X.; Chen, Z.; Wang, Y.; Ji, A.; Gao, Y. Novel synthesis of pure VO2@SiO2 core@shell nanoparticles to improve the optical and anti-oxidant properties of a VO2 film. RSC Adv. 2016, 6, 108286–108289. [Google Scholar] [CrossRef]
Sample | A1 | A2 | A3 |
---|---|---|---|
VO2/g | 0.6 | 0.6 | 0.6 |
Al(NO3)3·9H2O/g | 1.3569 | 2.7137 | 5.4275 |
NH4F/g | 0.4020 | 0.8062 | 1.6077 |
EG/mL | 60 | 60 | 60 |
Sample | Heating Cycle Tc,h (°C) | Cooling Cycle Tc,c (°C) | Phase Transition Temperature Tc (°C) | Hysteresis Width ∆Tc (°C) |
---|---|---|---|---|
A0 | 58.73 | 31.62 | 45.17 | 27.11 |
A1 | 62.96 | 35.52 | 49.24 | 27.44 |
A2 | 65.08 | 35.42 | 50.25 | 29.66 |
A3 | 65.25 | 44.64 | 54.94 | 20.61 |
Sample | Tlum,l (%) | Tlum,h (%) | Tsol,l (%) | Tsol,h (%) | T550 nm (%) | ΔTsol (%) |
---|---|---|---|---|---|---|
A0 | 46.9 | 44.2 | 52.5 | 34.5 | 45.4 | 18.0 |
A1 | 40.2 | 40.2 | 51.4 | 34.1 | 39.5 | 17.3 |
A2 | 36.3 | 33.5 | 59.2 | 42.0 | 49.7 | 17.2 |
A3 | 46.44 | 59.8 | 64.6 | 52.6 | 43.7 | 12.0 |
Sample | Tc (°C) | Tlum,l (%) | Tlum,h (%) | Tsol,l (%) | Tsol,h (%) | ΔTsol (%) |
---|---|---|---|---|---|---|
VO2 | 68.0 | 38.9 | 36.2 | 47 | 29.8 | 17.2 |
VO2@ZnO | 63.6 | 47.7 | 43.6 | 53.9 | 35.0 | 18.9 |
VO2@SiO2 | 68.0 | 70.0 | 68.8 | 72.0 | 66.9 | 5.0 |
VO2@AlF3 | 50.3 | 36.3 | 33.5 | 59.2 | 42.0 | 17.2 |
Sample | Tlum,l (%) | Tlum,h (%) | Tsol,l (%) | Tsol,h (%) | T550nm (%) | ΔTsol (%) |
---|---|---|---|---|---|---|
S1 | 46.1 | 47.3 | 35.2 | 22.9 | 46.2 | 12.3 |
S2 | 41.8 | 43.7 | 43.8 | 30.0 | 42.7 | 13.8 |
S3 | 27.3 | 34.2 | 31.5 | 20.3 | 30.7 | 11.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Chen, Y.; Liu, H.; Zhang, H.; Zhao, L. Chemical Deposition Method for Preparing VO2@AlF3 Core–Shell-Structured Nanospheres for Smart Temperature-Control Coating. Coatings 2025, 15, 1045. https://doi.org/10.3390/coatings15091045
Jiang L, Chen Y, Liu H, Zhang H, Zhao L. Chemical Deposition Method for Preparing VO2@AlF3 Core–Shell-Structured Nanospheres for Smart Temperature-Control Coating. Coatings. 2025; 15(9):1045. https://doi.org/10.3390/coatings15091045
Chicago/Turabian StyleJiang, Lingfeng, Yifei Chen, Haiyan Liu, Haoning Zhang, and Li Zhao. 2025. "Chemical Deposition Method for Preparing VO2@AlF3 Core–Shell-Structured Nanospheres for Smart Temperature-Control Coating" Coatings 15, no. 9: 1045. https://doi.org/10.3390/coatings15091045
APA StyleJiang, L., Chen, Y., Liu, H., Zhang, H., & Zhao, L. (2025). Chemical Deposition Method for Preparing VO2@AlF3 Core–Shell-Structured Nanospheres for Smart Temperature-Control Coating. Coatings, 15(9), 1045. https://doi.org/10.3390/coatings15091045