Effect of High-Current Field on Corrosion Behavior of Copper Wire in Simulated Atmospheric Environment
Abstract
1. Introduction
2. Test Materials and Methods
2.1. Materials
2.2. Electrochemical Experiment
2.3. Immersion Experiment
3. Results and Discussion
3.1. Corrosion Morphology Analysis
3.2. Corrosion Product Analysis
3.3. Electrochemical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niu, D.; Shi, H.; Li, J. Research of Evaluation Index System of the Development and Construction of “Two-type Transformer Substation”. J. Sustain. Dev. 2010, 3. [Google Scholar] [CrossRef]
- Tong, Z.; Dong, Z.; Ashton, T. Analysis of electric field influence on buildings under high-voltage transmission lines. IET Sci. Meas. Technol. 2016, 10, 253–258. [Google Scholar] [CrossRef]
- Bender, R.; Féron, D.; Mills, D.; Ritter, S.; Bäßler, R.; Bettge, D.; De Graeve, I.; Dugstad, A.; Grassini, S.; Hack, T.; et al. Corrosion challenges towards a sustainable society. Mater. Corros. 2022, 73, 1730–1751. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Wang, H.; Li, B.; Hu, Q.; Shao, T.; Yang, R.; Wang, B.; Wan, Q.; Li, Z.; et al. Experimental Study on Neutral Salt Spray Accelerated Corrosion of Metal Protective Coatings for Power-Transmission and Transformation Equipment. Coatings 2023, 13, 480. [Google Scholar] [CrossRef]
- Ajmal, C.M.; Benny, A.P.; Jeon, W.; Kim, S.; Kim, S.W.; Baik, S. In-situ reduced non-oxidized copper nanoparticles in nanocomposites with extraordinary high electrical and thermal conductivity. Mater. Today 2021, 48, 59–71. [Google Scholar] [CrossRef]
- Sato, M.; Endo, S.; Bu, Y.; Mizuno, T. Effectiveness of Magnetic Composite Material on Copper Loss Reductions and Misalignment in Copper-Plate-Coils for Wireless Power Transmission. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 470–477. [Google Scholar] [CrossRef]
- King, F.; Lilja, C.; Vähänen, M. Progress in the understanding of the long-term corrosion behaviour of copper canisters. J. Nucl. Mater. 2013, 438, 228–237. [Google Scholar] [CrossRef]
- Shinato, K.W.; Zewde, A.A.; Jin, Y. Corrosion protection of copper and copper alloys in different corrosive medium using environmentally friendly corrosion inhibitors. Corros. Rev. 2020, 38, 101–109. [Google Scholar] [CrossRef]
- Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 2022, 122, 10821–10859. [Google Scholar] [CrossRef]
- Kirchner, K.; Kirchner, T.; Ivaništšev, V.; Fedorov, M. Electrical double layer in ionic liquids: Structural transitions from multilayer to monolayer structure at the interface. Electrochim. Acta 2013, 110, 762–771. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Li, S.; Wang, Y.; Xiao, W. Reliability assessment of photovoltaic power systems: Review of current status and future perspectives. Appl. Energy 2013, 104, 822–833. [Google Scholar] [CrossRef]
- Dong, K.; Song, Y.; Chang, F.; Han, E.H. Galvanic corrosion mechanism of Ti-Al coupling: The impact of passive films on the coupling effect. Electrochim. Acta 2023, 462, 142662. [Google Scholar] [CrossRef]
- Cheng, T.; Huang, H.; Huang, G. Galvanic corrosion behavior between ADC12 aluminum alloy and copper in 3.5 wt% NaCl solution. J. Electroanal. Chem. 2022, 927, 116984. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Dai, N.; Yang, Y.; Yuan, X.; Cao, F.; Zhang, J. Probing the corrosion mechanism of zinc under direct current electric field. Mater. Chem. Phys. 2018, 206, 232–242. [Google Scholar] [CrossRef]
- Gu, J.; Xiao, Y.; Dai, N.; Zhang, X.; Ni, Q.; Zhang, J. The Suppression of transformation of γ-FeOOH to α-FeOOH accelerating the steel corrosion in simulated industrial atmospheric environment with a DC electric field interference. Corros. Eng. Sci. Technol. 2019, 54, 249–256. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Zhang, J.; Zhang, X.; Dai, N.; Zhang, L.C. Influence of direct current electric field on electrode process of carbon steel under thin electrolyte layers. J. Electrochem. Soc. 2018, 165, C385. [Google Scholar] [CrossRef]
- Dai, N.; Zhang, J.; Chen, Q.; Yi, B.; Cao, F.; Zhang, J. Effect of the direct current electric field on the initial corrosion of steel in simulated industrial atmospheric environment. Corros. Sci. 2015, 99, 295–303. [Google Scholar] [CrossRef]
- Su, G.; Ding, D.; Li, C.; Du, C.; Liu, Z.; Yang, X. Short-term Corrosion Behavior of Q235 Steel and Cu with AC Interference in Beijing Soil with Different Soil Moisture Contents. Corros. Prot. 2016, 37, 613–617+626. [Google Scholar] [CrossRef]
- Huang, H.; Guo, X.; Zhang, G.; Dong, Z. Effect of direct current electric field on atmospheric corrosion behavior of copper under thin electrolyte layer. Corros. Sci. 2011, 53, 3446–3449. [Google Scholar] [CrossRef]
- Huang, H.; Pan, Z.; Guo, X.; Qiu, Y. Effect of an alternating electric field on the atmospheric corrosion behaviour of copper under a thin electrolyte layer. Corros. Sci. 2013, 75, 100–105. [Google Scholar] [CrossRef]
- Huang, H.; Guo, X.; Zhang, G.; Dong, Z. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer. Corros. Sci. 2011, 53, 1700–1707. [Google Scholar] [CrossRef]
- GB/T16545-1996; Corrosion of Metals and Alloys—Removal of Corrosion Products from Corrosion Test Specimens. State Administration for Market Regulation: Beijing, China, 1996.
- Huang, H.; Pan, Z.; Qiu, Y.; Guo, X. Electrochemical corrosion behaviour of copper under periodic wet–dry cycle condition. Microelectron. Reliab. 2013, 53, 1149–1158. [Google Scholar] [CrossRef]
- Lin, H.; Frankel, G.S. Atmospheric corrosion of Cu during constant deposition of NaCl. J. Electrochem. Soc. 2013, 160, C336. [Google Scholar] [CrossRef]
Fe | S | Cu | As | Pb | Bi | Sb |
---|---|---|---|---|---|---|
0.003 | 0.002 | 99.9 | 0.001 | 0.002 | 0.001 | 0.001 |
Conditions | Time/h | Ecorr/V | Icorr/μA∙cm−2 |
---|---|---|---|
0 A | 0 | −0.4623 | 5.28 |
2 | −0.3483 | 7.78 | |
5 | −0.3299 | 4.95 | |
10.5 | −0.3471 | 9.33 | |
17.5 | −0.3739 | 4.59 | |
5 A | 0 | ||
2 | −0.3224 | 4.07 | |
5 | −0.3305 | 4.1 | |
10.5 | −0.3541 | 17.7 | |
17.5 | −0.3272 | 15.9 | |
10 A | 0 | ||
2 | −0.3524 | 7.90 | |
3.5 | −0.3208 | 6.90 | |
5 | −0.2739 | 8.01 | |
10.5 | −0.2974 | 17.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Du, B.; Jiang, B.; Gao, Z.; Wu, Y.; Wang, Q. Effect of High-Current Field on Corrosion Behavior of Copper Wire in Simulated Atmospheric Environment. Coatings 2025, 15, 1036. https://doi.org/10.3390/coatings15091036
Fan Z, Du B, Jiang B, Gao Z, Wu Y, Wang Q. Effect of High-Current Field on Corrosion Behavior of Copper Wire in Simulated Atmospheric Environment. Coatings. 2025; 15(9):1036. https://doi.org/10.3390/coatings15091036
Chicago/Turabian StyleFan, Zhibin, Baoshuai Du, Bo Jiang, Zhiyue Gao, Yaping Wu, and Qian Wang. 2025. "Effect of High-Current Field on Corrosion Behavior of Copper Wire in Simulated Atmospheric Environment" Coatings 15, no. 9: 1036. https://doi.org/10.3390/coatings15091036
APA StyleFan, Z., Du, B., Jiang, B., Gao, Z., Wu, Y., & Wang, Q. (2025). Effect of High-Current Field on Corrosion Behavior of Copper Wire in Simulated Atmospheric Environment. Coatings, 15(9), 1036. https://doi.org/10.3390/coatings15091036