Effect of Y2O3 Particle Size on the Microstructure and Properties of Ni-Co-Y2O3 Composite Coatings
Abstract
1. Introduction
2. Preparation and Characterization
3. Results and Discussion
3.1. Cyclic Voltammetry Tests
3.2. Phase Analysis
3.3. XPS Analysis
3.4. Microstructure of the Plated Layer
3.5. Hardness Analysis
3.6. Corrosion Resistance Analysis
3.7. Frictional Wear
4. Conclusions
- The particle size of Y2O3 has a significant influence on the reduction potential of the coating. XPS analysis reveals that the chemical environment of the elements changes with increasing particle size. Hardness testing indicates that the Ni-Co-Y2O3 (50 nm and 100 nm mixed) coating benefits from the synergistic effect between large and small particles, which effectively hinders dislocation movement and optimizes load transfer. As a result, its hardness is higher than that of coatings with a single particle size.
- The Ni-Co-Y2O3 (50 nm and 100 nm mixed) coating showed poor stability and was prone to corrosion through the corrosion resistance test, and the particle adhesion was weak. The coating prepared by mixing Y2O3 with particles of 50 nm and 100 nm in size had a smaller friction coefficient.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakonyi, I.; Hansal, W.E.G. Development of pulse-plating technology for the preparation of coatings with varying composition along their thickness: A historical overview. Trans. IMF 2018, 96, 237–243. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Walsh, F.C.; Zangari, G.; Köçkar, H.; Alper, M.; Rizal, C.; Magagnin, L.; Protsenko, V.; Arunachalam, R.; Rezvanian, A.; et al. Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications. Appl. Surf. Sci. Adv. 2021, 6, 100141. [Google Scholar] [CrossRef]
- Li, B.; Li, D.; Chen, W.; Liu, Y.; Zhang, J.; Wei, Y.; Zhang, W.; Jia, W. Effect of current density and deposition time on microstructure and corrosion resistance of Ni-W/TiN nanocomposite coating. Ceram. Int. 2019, 45, 4870–4879. [Google Scholar] [CrossRef]
- Xia, F.; Li, Q.; Ma, C.; Guo, X. Preparation and characterization of Ni–AlN nanocoatings deposited by magnetic field assisted electrodeposition technique. Ceram. Int. 2020, 46, 2500–2509. [Google Scholar] [CrossRef]
- Xia, F.; Yan, P.; Ma, C.; Wang, B.; Liu, Y. Effect of different heat-treated temperatures upon structural and abrasive performance of Ni-TiN composite nanocoatings. J. Mater. Res. Technol. 2023, 27, 2874–2881. [Google Scholar] [CrossRef]
- Ma, C.; He, H.; Xia, F.; Xiao, Z.; Liu, Y. Performance of Ni–SiC composites deposited using magnetic-field-assisted electrodeposition under different magnetic-field directions. Ceram. Int. 2023, 49, 35907–35916. [Google Scholar] [CrossRef]
- Gao, M.; Liu, L.; Huang, Z.; Jiang, C.; Wang, X.; Huang, F.; Li, X.; Zhang, X. Electrodeposition and properties of Ni–W–Ti2AlC composite coatings. Ceram. Int. 2024, 50, 18832–18842. [Google Scholar] [CrossRef]
- Bakhit, B.; Akbari, A. Synthesis and characterization of Ni–Co/SiC nanocomposite coatings using sediment co-deposition technique. J. Alloys Compd. 2013, 560, 92–104. [Google Scholar] [CrossRef]
- Karimzadeh, A.; Rouhaghdam, A.S.; Aliofkhazraei, M.; Miresmaeili, R. Sliding wear behavior of Ni–Co–P multilayer coatings electrodeposited by pulse reverse method. Tribol. Int. 2020, 141, 105914. [Google Scholar] [CrossRef]
- Allahyarzadeh, M.H.; Aliofkhazraei, M.; Rouhaghdam, A.S.; Torabinejad, V. Electrochemical tailoring of ternary Ni-W-Co (Al2O3) nanocomposite using pulse reverse technique. J. Alloys Compd. 2017, 705, 788–800. [Google Scholar] [CrossRef]
- Ranjith, B.; Kalaignan, G.P. Ni–Co–TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath. Appl. Surf. Sci. 2010, 257, 42–47. [Google Scholar] [CrossRef]
- Wasekar, N.P.; Latha, S.M.; Ramakrishna, M.; Rao, D.S.; Sundararajan, G. Pulsed electrodeposition and mechanical properties of Ni-W/SiC nano-composite coatings. Mater. Des. 2016, 112, 140–150. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Yu, X.; Cui, G. Characterisation and properties of Ni–W–Y2O3–ZrO2 nanocomposite coating. Surf. Eng. 2019, 35, 578–587. [Google Scholar] [CrossRef]
- Sadreddini, S.; Afshar, A. Corrosion resistance enhancement of Ni-P-nano SiO2 composite coatings on aluminum. Appl. Surf. Sci. 2014, 303, 125–130. [Google Scholar] [CrossRef]
- Beltowska-Lehman, E.; Bigos, A.; Indyka, P.; Chojnacka, A.; Drewienkiewicz, A.; Zimowski, S.; Kot, M.; Szczerba, M.J. Optimisation of the electrodeposition process of Ni-W/ZrO2 nanocomposites. J. Electroanal. Chem. 2018, 813, 39–51. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Huan, Y.; Dong, J. Synthesis and characterization of Ni-B/Al2O3 nanocomposite coating by electrodeposition using trimethylamine borane as boron precursor. Surf. Coat. Technol. 2018, 337, 186–197. [Google Scholar] [CrossRef]
- Elkhoshkhany, N.; Hafnway, A.; Khaled, A. Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating. J. Alloys Compd. 2017, 695, 1505–1514. [Google Scholar] [CrossRef]
- Firdouz, Z.; Tripathi, P.; Mondal, K.; Balani, K. Effect of carbonaceous reinforcements on anticorrosive and magnetic properties of Ni-Cu based composite coatings prepared by pulsed electrodeposition. Surf. Coat. Technol. 2022, 441, 128560. [Google Scholar] [CrossRef]
- Wang, C.; Shen, L.; Qiu, M.; Tian, Z.; Jiang, W. Characterizations of Ni-CeO2 nanocomposite coating by interlaced jet electrodeposition. J. Alloys Compd. 2017, 727, 269–277. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.C.; Walsh, F.C.; Chiu, Y.L.; Reed, P.A.S. Self-lubricating Ni-P-MoS2 composite coatings. Surf. Coat. Technol. 2016, 307, 926–934. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Mei, T.; Miao, Y. Fabrication of Ni–B/TiC–Y2O3 nanocomposites by one-step electrodeposition at different duty cycle and evaluation of structural, surface and performance as protective coating. J. Alloys Compd. 2020, 823, 153888. [Google Scholar] [CrossRef]
- Yao, Q.L.; He, M.; Kong, Y.R.; Gui, T.; Lu, Z.H. Y2O3-functionalized graphene-immobilized Ni–Pt nanoparticles for enhanced hydrous hydrazine and hydrazine borane dehydrogenation. Rare Met. 2023, 42, 3410–3419. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Liang, Z.; Jin, H. Electrochemical deposition and nucleation/growth mechanism of Ni–Co–Y2O3 multiple coatings. Materials 2018, 11, 1124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, S.Q.P.; Fu, X.F. Experimental study on friction-assisted electroforming of Ni-Co alloys. Mater. Res. Express 2023, 10, 026508. [Google Scholar] [CrossRef]
- Xue, Y.J.; Shen, C.; Li, J.S.; Li, H.; Si, D.H. Corrosion resistance of Ni-Y2O3 composite coating prepared by electrodeposition under ultrasonic condition. Adv. Mater. Res. 2010, 97, 1235–1238. [Google Scholar] [CrossRef]
- Yi, X.; He, P.; Chen, Y.; Wang, W.; Yang, D.; Dong, F. Y2O3-Modified Ni-Co Composite Coating as Cathode Materials for Hydrogen Evolution Reaction on Titanium Substrate. ECS Trans. 2010, 28, 13. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Sun, J.F.; Wang, S.C.; Zhang, H.J. Oxidation of an electrodeposited Ni–Y2O3 composite film. Corros. Sci. 2012, 63, 351–357. [Google Scholar] [CrossRef]
- Tian, L.; Xu, J. Electrodeposition and characterization of Ni–Y2O3 composite. Appl. Surf. Sci. 2011, 257, 7615–7620. [Google Scholar] [CrossRef]
- Kan, H.M.; Meng, Y.Y.; Reddy, R.G. Influence of particle size and surfactants on uniformity and quantity of silicon carbide particles in electrodeposited nickel-silicon carbide coatings. J. Cent. South Univ. 2021, 28, 1627–1636. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Grey, L.H.; Nie, H.Y.; Biesinger, M.C. Defining the nature of adventitious carbon and improving its merit as a charge correction reference for XPS. Appl. Surf. Sci. 2024, 653, 159319. [Google Scholar] [CrossRef]
- Wu, G.; Li, N.; Zhou, D.; Cang, Z. The microstructure and high temperature properties of electrodeposited Co-Ni-Al2O3 composite coatings. J. Compos. Mater. 2004, 02, 8–13. [Google Scholar]
- Zhao, M.; Wang, J.; Li, H.; Yang, H.; Zhou, Y.; Li, J. Grain size effects on mechanical behavior of Al0.25CoCrFeNi high-entropy alloy at room and cryogenic temperatures. Intermetallics 2025, 183, 108792. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Asl, F.G.; Rashedi, H. Pulse-reverse electrodeposition of Ni-Co/graphene composite films with high hardness and electrochemical behaviour. Diam. Relat. Mater. 2023, 133, 109720. [Google Scholar] [CrossRef]
- Karmakar, R.; Maji, P.; Ghosh, S.K. A review on the nickel based metal matrix composite coating. Met. Mater. Int. 2021, 27, 2134–2145. [Google Scholar] [CrossRef]
- Lin, S.N.; Niu, L.P.; Wang, Y.Y.; Zhou, X.Y.; Liang, Z.P.; Liu, X.; Zhang, T.A. Orthogonal optimization of composite electrodeposition nickel-cobalt-yttrium oxide process in sulfamate system. Plat. Finish. 2020, 39, 532–535. [Google Scholar]
- Raghavendra, C.R.; Basavarajappa, S.; Sogalad, I.; Kumar, S. A review on Ni based nano composite coatings. Mater. Today Proc. 2021, 39, 6–16. [Google Scholar] [CrossRef]
- Shozib, I.A.; Ahmad, A.; Abdul-Rani, A.M.; Beheshti, M.; Aliyu, A.A.A. A review on the corrosion resistance of electroless Ni-P based composite coatings and electrochemical corrosion testing methods. Corros. Rev. 2022, 40, 1–37. [Google Scholar] [CrossRef]
Electrolyte Components | Concentration (g/L) |
---|---|
NiSO4·7H2O | 300 |
NiCl2·6H2O | 80 |
CoSO4·7H2O | 15 |
H3BO3 | 40 |
SDS | 4 |
Y2O3 (50 nm) | 6 |
Y2O3 (100 nm) | 6 |
Y2O3 (50 nm and 100 nm mixed) | 6 |
Deposition parameters | Amount |
Solution pH | 4.3 |
Temperature (°C) | 55 |
Current density (A/dm2) | 4 |
Magnetic agitation rate (rpm) | 350 |
Electrodeposition cell voltage (V) | 1.1 |
Deposition time (minute) | 75 |
Bath volume (mL) | 100 |
Y2O3 particle size | 50 nm; 100 nm |
Sample | Y 3d | C 1s | O 1s | Co 2p | Ni 2p |
---|---|---|---|---|---|
50 nm | 0.75 | 69.9 | 27 | 0.73 | 1.63 |
100 nm | 0.98 | 64.42 | 31.07 | 1.07 | 2.47 |
mixed | 1.81 | 56.14 | 34.25 | 1.87 | 5.92 |
Sample | 1 Hardness (HV) | 2 Hardness (HV) | 3 Hardness (HV) | 4 Hardness (HV) | 5 Hardness (HV) |
---|---|---|---|---|---|
50 nm | 400.7 | 402.5 | 404.1 | 406.3 | 400.4 |
100 nm | 509.2 | 510.4 | 511.3 | 511.3 | 510.0 |
mixed | 675.8 | 679.2 | 683.5 | 687.1 | 675.9 |
Y2O3 (size) | 50 nm | 50 nm | 100 nm | mixed |
---|---|---|---|---|
Hardness (HV) | 538.85 [36] | 402.8 | 510.6 | 680.3 |
Statistics | Error Bars | Standard Deviation | Statistical Significance |
---|---|---|---|
50 nm | 1.10 | 2.46 | p < 0.0001 |
100 nm | 0.505 | 1.13 | p < 0.001 |
mixed | 2.21 | 4.93 | p < 0.0001 |
Samples | Ecorr (V) | Icorr (A/cm2) | βa (V/dec) | −βc (V/dec) | Corrosion Rate (mm/y) |
---|---|---|---|---|---|
50 nm | −0.48 | 2.036 × 10−5 | 82.4 | 96.4 | 0.0137 |
100 nm | −0.46 | 8.719 × 10−6 | 63.5 | 82.6 | 0.0091 |
mixed | −0.51 | 2.381 × 10−5 | 75.9 | 90.7 | 0.0106 |
Statistics | Error Bars | Standard Deviation |
---|---|---|
data | 0.0146 | 0.0252 |
Samples | RS (Ω) | CPEf (μF.cm−2) | Rf (Ω) | CPEdl (μF.cm−2) | Rct (Ω) | χ2 |
---|---|---|---|---|---|---|
50 nm | 5.587 | 128.2 | 4163 | 292.3 | 4286 | ≈0.002 |
100 nm | 5.061 | 67.47 | 8620 | 387 | 16050 | ≈0.004 |
mixed | 5.297 | 106.2 | 3213 | 130.8 | 9458 | ≈0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Kan, H.; Yue, T.; Wu, J. Effect of Y2O3 Particle Size on the Microstructure and Properties of Ni-Co-Y2O3 Composite Coatings. Coatings 2025, 15, 1009. https://doi.org/10.3390/coatings15091009
Qi L, Kan H, Yue T, Wu J. Effect of Y2O3 Particle Size on the Microstructure and Properties of Ni-Co-Y2O3 Composite Coatings. Coatings. 2025; 15(9):1009. https://doi.org/10.3390/coatings15091009
Chicago/Turabian StyleQi, Linxin, Hongmin Kan, Tingting Yue, and Jiang Wu. 2025. "Effect of Y2O3 Particle Size on the Microstructure and Properties of Ni-Co-Y2O3 Composite Coatings" Coatings 15, no. 9: 1009. https://doi.org/10.3390/coatings15091009
APA StyleQi, L., Kan, H., Yue, T., & Wu, J. (2025). Effect of Y2O3 Particle Size on the Microstructure and Properties of Ni-Co-Y2O3 Composite Coatings. Coatings, 15(9), 1009. https://doi.org/10.3390/coatings15091009