Hydrothermal Calcification of Sand-Blasted/Acid-Etched Titanium with Improved Corrosion Resistance and Cytocompatibility
Abstract
1. Introduction
2. Experimental
2.1. Samples Preparation
2.2. Material Characterization and Tests
2.3. Cell Tests
3. Results and Discussion
3.1. Microstructure and Surface Morphology of the Samples
3.2. Hydrophilicity and Corrosion Tests
3.3. Cell Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Yuan, Z.; Hu, J.-W.; Xu, K.; Wang, H.; Liu, P.; Cai, K.-Y. Surface modification of titanium implants with micro-nanotopography and NIR photothermal property for treating bacterial infection and promoting osseointegration. Rare Met. 2022, 41, 673–688. [Google Scholar] [CrossRef]
- Jiang, H.H.; Ma, X.; Zhou, W.J.; Dong, K.; Rausch-Fan, X.; Liu, S.T.; Li, S. The effects of hierarchical micro/nano-structured titanium surface on osteoblast proliferation and differentiation under diabetic conditions. Implant Dent. 2017, 26, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Carrasco, B.; Lemos, B.F.; Herrero-Climent, M.; Mur, F.J.G.; Ríos-Santos, J.V. Effect of the acid-etching on grit-blasted dental implants to improve osseointegration: Histomorphometric analysis of the bone-implant contact in the rabbit tibia model. Coatings 2021, 11, 1426. [Google Scholar] [CrossRef]
- Li, L.J.; Kim, S.N.; Cho, S.A. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: Modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces. J. Adv. Prosthodont. 2016, 8, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Barranco, V.; Escudero, M.L.; García-Alonso, M.C. Influence of the microstructure and topography on the barrier properties of oxide scales generated on blasted Ti6Al4V surfaces. Acta Biomater. 2011, 7, 2716–2725. [Google Scholar] [CrossRef]
- Saldaña, L.; Barranco, V.; González-Carrasco, J.L.; Rodríguez, M.; Munuera, L.; Vilaboa, N. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. J. Biomed. Mater. Res. Part A 2007, 81, 334–346. [Google Scholar] [CrossRef]
- Park, J.W. Osseointegration of two different phosphate ion-containing titanium oxide surfaces in rabbit cancellous bone. Clin. Oral Implant Res. 2013, 24, 145–151. [Google Scholar] [CrossRef]
- Park, J.W.; An, C.H.; Jeong, S.H.; Suh, J.Y. Osseointegration of commercial microstructured titanium implants incorporating magnesium: A histomorphometric study in rabbit cancellous bone. Clin. Oral Implant Res. 2012, 23, 294–300. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, Y.J.; Jang, J.H.; Suh, J.Y. Surface characteristics and primary bone marrow stromal cell response of a nanostructured strontium-containing oxide layer produced on a microrough titanium surface. J. Biomed. Mater. Res. Part A 2012, 100, 1477–1487. [Google Scholar] [CrossRef]
- Kityk, A.; Hnatko, M.; Pavlik, V.; Balog, M.; Soltys, J.; Labudova, M. Advancing biomedical substrate engineering: An eco-friendly route for synthesizing micro- and nanotextures on 3D printed Ti-6Al-4V. J. Mater. Res. Technol. 2024, 28, 2098–2115. [Google Scholar] [CrossRef]
- Iwata, N.; Nozaki, K.; Horiuchi, N.; Yamashita, K.; Tsutsumi, Y.; Miura, H.; Nagai, A. Effects of controlled micro-/nanosurfaces on osteoblast proliferation. J. Biomed. Mater. Res. Part A 2017, 105, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- Kohavi, D.; Badihi, L.; Rosen, G.; Steinberg, D.; Sela, M.N. An in vivo method for measuring the adsorption of plasma proteins to titanium in humans. Biofouling 2013, 29, 1215–1224. [Google Scholar] [CrossRef]
- Bryington, M.; Mendonça, G.; Nares, S.; Cooper, L.F. Osteoblastic and cytokine gene expression of implant-adherent cells in humans. Clin. Oral Implants Res. 2014, 25, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Ge, X.Y.; Jia, S.N.; Jiang, X.; Zhang, Y.; Lin, Y. The influence of titanium surfaces treated by alkalis on macrophage and osteoblast-like cell adhesion and gene expression in vitro. RSC Adv. 2015, 5, 81378–81387. [Google Scholar] [CrossRef]
- Jia, S.N.; Zhang, Y.; Ma, T.; Chen, H.F.; Lin, Y. Enhanced hydrophilicity and protein adsorption of titanium surface by sodium bicarbonate solution. J. Nanomater. 2015, 2015, 536801. [Google Scholar] [CrossRef]
- Huang, J.Y.; Zhang, X.C.; Yan, W.X.; Chen, Z.P.; Shuai, X.T.; Wang, A.X.; Wang, Y. Nanotubular topography enhances the bioactivity of titanium implants. Nanomed.-Nanotechnol. Biol. Med. 2017, 13, 1913–1923. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, J.S.; Park, Y.M.; Choi, B.Y.; Lee, J. Mg ion implantation on SLA-treated titanium surface and its effects on the behavior of mesenchymal stem cell. Mater. Sci. Eng. C 2013, 33, 1554–1560. [Google Scholar] [CrossRef]
- Chou, W.C.; Wang, R.C.C.; Liu, C.; Yang, C.Y.; Lee, T.M. Surface modification of direct-current and radio-frequency oxygen plasma treatments enhance cell biocompatibility. Materials 2017, 10, 1223. [Google Scholar] [CrossRef]
- Zhu, Y.; Gu, Y.X.; Qiao, S.C.; Zhou, L.Y.; Shi, J.Y.; Lai, H.C. Bacterial and mammalian cells adhesion to tantalum-decorated micro-/nano-structured titanium. J. Biomed. Mater. Res. Part A 2017, 105, 871–878. [Google Scholar] [CrossRef]
- Mohammadnejad, L.; Theurer, A.; Alber, J.; Illing, B.; Kimmerle-Mueller, E.; Schultheiss, J.; Krajewski, S.; Rupp, F. Surface-mediated modulation of different biological responses on anatase-coated titanium. J. Funct. Biomater. 2024, 15, 29. [Google Scholar] [CrossRef]
- Zhang, J.M.; Wang, T.; Tang, C.B.; Wang, Q.N.; Qian, H.M.; Miao, R.J. Preparation and property of PDA/CPP bilayer on SLA surfaces. J. Inorg. Mater. 2017, 32, 1264–1268. [Google Scholar]
- Deng, J.Y.; Cohen, D.J.; Sabalewski, E.L.; Van Duyn, C.; Wilson, D.S.; Schwartz, Z.; Boyan, B.D. Semaphorin 3A delivered by a rapidly polymerizing click hydrogel overcomes impaired implant osseointegration in a rat type 2 diabetes model. Acta Biomater. 2023, 157, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Li, H.-W.; Sun, J.-m.; Li, G.; Li, W.; Zhang, H.-m. Facile hydrothermal synthesis of TiO2-CaP nano-films on Ti6Al4V alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 1122–1127. [Google Scholar] [CrossRef]
- Li, H.; Fu, T.; Li, W.; Alajmi, Z.; Sun, J. Hydrothermal growth of TiO2-CaP nano-films on a Ti-Nb-based alloy in concentrated calcium phosphate solutions. J. Nanopart. Res. 2016, 18, 4. [Google Scholar] [CrossRef]
- Fu, T.; Sun, J.M.; Zhao, Y.T.; Wang, L.J.; Zhou, Y.C.; Ma, X. Hydrothermally crystallized Sr-containing bioactive glass film and its cytocompatibility. Ceram. Int. 2017, 43, 13689–13695. [Google Scholar] [CrossRef]
- Cho, H.W.; Liao, K.L.; Yang, J.S.; Wu, J.J. Revelation of rutile phase by Raman scattering for enhanced photoelectrochemical performance of hydrothermally-grown anatase TiO2 film. Appl. Surf. Sci. 2018, 440, 125–132. [Google Scholar] [CrossRef]
- Zanatta, A.R. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2. AIP Adv. 2017, 7, 075201. [Google Scholar] [CrossRef]
- Fu, T.; Fan, J.T.; Shen, Y.G.; Sun, J.M. Hydrothermal calcification of alkali treated titanium in CaHPO4 solution. Mater. Chem. Phys. 2017, 189, 105–110. [Google Scholar] [CrossRef]
- Saber-Samandari, S.; Alamara, K.; Saber-Samandari, S. Calcium phosphate coatings: Morphology, micro-structure and mechanical properties. Ceram. Int. 2014, 40, 563–572. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J. Colloid Interface Sci. 2019, 533, 268–277. [Google Scholar] [CrossRef]
- Tan, J.; Li, L.; Li, B.; Tian, X.; Song, P.; Wang, X. Titanium surfaces modified with graphene oxide/gelatin composite coatings for enhanced antibacterial properties and biological activities. ACS Omega 2022, 7, 27359–27368. [Google Scholar] [CrossRef] [PubMed]
- Jeyalakshmi, P.; Ramkumar, P. The synergetic effect of micro-blasting and thermal oxidation on the corrosion performance of Ti6Al4V. Surf. Coat. Technol. 2023, 467, 129727. [Google Scholar] [CrossRef]
- Barranco, V.; Onofre, E.; Escudero, M.L.; Garcia-Alonso, M.C. Characterization of roughness and pitting corrosion of surfaces modified by blasting and thermal oxidation. Surf. Coat. Technol. 2010, 204, 3783–3793. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, W.; Qiu, K.; Chen, L.; Wang, W.; Nie, W.; Mo, X.; He, C. BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appl. Mater. Interfaces 2015, 7, 15777–15789. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Li, S.J.; Tao, X.J.; Hao, Y.L.; Yang, R. Surface modification of Ti-Nb-Zr-Sn alloy by thermal and hydrothermal treatments. Mater. Sci. Eng. C 2009, 29, 1245–1251. [Google Scholar] [CrossRef]
- Chen, X.-B.; Li, Y.-C.; Du Plessis, J.; Hodgson, P.D.; Wen, C.E. Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater. 2009, 5, 1808–1820. [Google Scholar] [CrossRef]
Sample | Scan Area 2640 × 3500 μm2 (50×) | Scan Area 264 × 350 μm2 (500×) | ||||
---|---|---|---|---|---|---|
Sa (μm) | Sq | Spv (μm) | Sa (μm) | Sq | Spv (μm) | |
Ti-PL | 2.38 | 2.96 | 28.04 | 0.16 | 0.20 | 2.39 |
BL | 7.53 | 9.96 | 120.74 | 5.13 | 6.74 | 48.76 |
BE | 6.66 | 8.73 | 105.79 | 6.01 | 8.00 | 67.58 |
BEH | 4.84 | 6.44 | 79.20 | 4.83 | 6.22 | 41.05 |
Sample | Ecorr (V SCE) | Icorr (μA cm−2) | Epit (V SCE) | Epass (V SCE) | Ipass (μA cm−2) |
---|---|---|---|---|---|
Ti-PL | −0.42 | 0.003 | 1.29 | 1.30 | 2.159 * |
BL | −0.29 | 0.026 | / | / | / |
BE | −0.43 | 0.020 | 1.20 | 1.20 | 3.768 * |
BEH | −0.40 | 0.021 | 1.10 | 1.39 | 0.108 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Hua, K.; Liu, Z.; Zhao, Y.; Fan, H.; Fu, T. Hydrothermal Calcification of Sand-Blasted/Acid-Etched Titanium with Improved Corrosion Resistance and Cytocompatibility. Coatings 2025, 15, 771. https://doi.org/10.3390/coatings15070771
Mu Y, Hua K, Liu Z, Zhao Y, Fan H, Fu T. Hydrothermal Calcification of Sand-Blasted/Acid-Etched Titanium with Improved Corrosion Resistance and Cytocompatibility. Coatings. 2025; 15(7):771. https://doi.org/10.3390/coatings15070771
Chicago/Turabian StyleMu, Yijing, Kai Hua, Zeying Liu, Yantao Zhao, Hongling Fan, and Tao Fu. 2025. "Hydrothermal Calcification of Sand-Blasted/Acid-Etched Titanium with Improved Corrosion Resistance and Cytocompatibility" Coatings 15, no. 7: 771. https://doi.org/10.3390/coatings15070771
APA StyleMu, Y., Hua, K., Liu, Z., Zhao, Y., Fan, H., & Fu, T. (2025). Hydrothermal Calcification of Sand-Blasted/Acid-Etched Titanium with Improved Corrosion Resistance and Cytocompatibility. Coatings, 15(7), 771. https://doi.org/10.3390/coatings15070771