Preparation of WC + NbC Particle-Reinforced Ni60-Based Composite Coating by Laser Cladding on Q235 Steel
Abstract
1. Introduction
2. Experimental Processes
2.1. Materials
2.2. Characterization
3. Results
3.1. Microstructure and EDS
3.2. Phase Compositions of the Coatings
3.3. Wear Behavior
3.4. Microhardness
4. Conclusions
- (1)
- Each area of the coating had different micro-morphology, which is mainly due to the differences in coating compound composition. The formation of compounds was also the main cause of the phase shift.
- (2)
- Adding WC and NbC can effectively improve the hardness and resistance of the coating. S1 has the lowest COF and wear rate, high microhardness, significantly improved coating properties, and the best comprehensive properties.
- (3)
- With the decrease in WC and the increase in NbC, the wear mechanism of the coating changed from abrasive wear to adhesive wear, and finally the coating was damaged by friction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Wang, Y.; Zhai, X.; Zhou, H. Compressive mechanical behaviors of Q235B steel over a wide range of temperatures and strain rates. Int. J. Impact Eng. 2025, 198, 105222. [Google Scholar] [CrossRef]
- Dong, Q.; Borisovich, T.T.; Grigorievicth, B.S.; Wang, H.F.; Song, W.W.; Pu, J.F.; Ju, Y.; Cao, S.Z. Effect of laser cladding process parameters on the microstructure and corrosion resistance of Ni55A alloy coatings on Q235 steel. Int. J. Electrochem. Sci. 2025, 20, 100932. [Google Scholar] [CrossRef]
- Feng, R.; Pan, J.; Zhang, J.; Shao, Y.; Chen, B.; Fang, Z.; Roy, K.; Lim, J.B. Effects of corrosion morphology on the fatigue life of corroded Q235B and 42CrMo steels: Numerical modelling and proposed design rules. Structures 2023, 57, 105136. [Google Scholar] [CrossRef]
- Yang, Q.; Xiong, Y.; Huang, Y.; Cheng, J.; Lou, D.; Chen, L.; Li, Q.; Liu, D. Nanosecond laser passivation mechanism of Q235B carbon steel surface. J. Mater. Eng. Perform. 2024, 34, 2371–2379. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, H.; Lu, L.; Lu, D. Microstructure and properties of modiffed layer on the 65Mn steel surface by pulse detonation-plasma technology. J. Mater. Eng. Perform. 2024, 31, 1562–1572. [Google Scholar] [CrossRef]
- Long, W.; Lu, Q.; Zhong, S.; Qin, J.; Yu, H.; Wu, A. Research on interface structure and performance of diamond brazed coating based on non-vacuum environment. Weld World 2022, 66, 1043–1052. [Google Scholar] [CrossRef]
- Hupfer, M.L.; Meyer, R.; Deckert, T.; Ghosh, S.; Skabeev, A.; Deckert, V.; Dietzek, B.; Presselt, M. Supramolecular reorientation during deposition onto metal surfaces of quasi-two-dimensional Langmuir monolayers composed of bifunctional amphiphilic, twisted Perylenes. Langmuir 2021, 37, 11018–11026. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, C.H.; Wang, Z.Y.; Cui, X.; Zhang, S.; Chen, H.T. Microstructure and corrosion behaviour of WC/NiCrBSi coatings by vacuum cladding. Mater. Sci. Technol. 2022, 38, 19–29. [Google Scholar] [CrossRef]
- Wang, B.; Xue, W.B.; Wu, J.; Jin, X.Y.; Hua, M.; Wu, Z.L. Characterization of surface hardened layers on Q235 low-carbon steel treated by plasma electrolytic borocarburizing. J. Alloys Compd. 2013, 578, 162–169. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Liu, B.X.; He, J.N.; Fang, W.; Zhang, F.Y.; Zhang, X.; Chen, C.X.; Yin, F.X. Microstructure and mechanical properties of SUS304/Q235 multilayer steels fabricated by roll bonding and annealing. Mater. Sci. Eng. A 2019, 740–741, 92–107. [Google Scholar] [CrossRef]
- Pougoum, F.; Qian, J.; Laberge, M.; Martinu, L.; Klemberg-Sapieha, J.; Zhou, Z.F.; Li, K.Y.; Savoie, S.; Schulz, R. Investigation of FeAl-based PVD/HVOF duplex coatings to protect stainless steel from sliding wear against alumina. Surf. Coat. Technol. 2018, 350, 699–711. [Google Scholar] [CrossRef]
- Deng, C.; Wang, C.; Chai, L.J.; Wang, T.; Luo, J. Mechanical and chemical properties of CoCrFeNiMo0.2 high entropy alloy coating fabricated on Ti6Al4V by laser cladding. Intermetallics 2022, 144, 107504. [Google Scholar] [CrossRef]
- Ren, L.R.; Shi, Z.C.; Chu, M.Y.; Mo, T.Q.; Xiao, H.Q. Preparation and characterization of laser cladded Ti-Al-C composite coatings using Ti2AlC/TiAl powders. Mater. Today Commun. 2025, 46, 112514. [Google Scholar] [CrossRef]
- Chen, J.; Lian, G.; Lin, T.; Lu, H.; Wang, Y. Effects of the proportions of carbon on the microstructure and properties of NbC-reinforced Ni-WC composite coatings by laser cladding in-situ synthesis. Mater. Today Commun. 2024, 38, 107896. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.; Wang, L.; Yang, X.; Zeng, T.; Sun, L.; Wang, R. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3. Surf. Coat. Technol. 2022, 435, 128264. [Google Scholar] [CrossRef]
- Zhang, Z.; Hua, K.; Cao, Y.; Song, Y.; Li, X.; Zhou, Q.; Wang, H. Microstructures and properties of FeCrAlMoSix high entropy alloy coatings prepared by laser cladding on a titanium alloy substrate. Surf. Coat. Technol. 2024, 478, 130437. [Google Scholar] [CrossRef]
- Tang, J.; Wang, K.; Fu, H. Laser Cladding In Situ CarbideReinforced Iron-Based Alloy Coating: A Review. Metals 2024, 14, 1419. [Google Scholar] [CrossRef]
- Ma, W.; Xu, X.; Xie, Y.S.; Bei, Z.H.; Yuan, Y.; Yu, H.Y. Microstructural evolution and anti-corrosion properties of laser cladded Tibased coating on Q235 steel. Surf. Coat. Technol. 2024, 477, 130383. [Google Scholar] [CrossRef]
- Zhou, J.L.; Cheng, Y.H.; He, B.; Wan, Y.X.; Chen, H.; Wang, Y.F.; Yang, J.Y. Enhancement of high-entropy alloy coatings with multi-scale TiC ceramic particles via high-speed laser cladding: Microstructure, wear and corrosion. App. Surf. Sci. 2025, 685, 162061. [Google Scholar] [CrossRef]
- Gao, Z.M.; Niu, Z.M.; Gao, Z.T.; Li, J.Z.; Bai, G.H.; Ke, L.C.; Yu, Y.; Zhang, C.W. Microstructure and wear behavior of in-situ synthesized TiC-reinforced CoCrFeNi high entropy alloy prepared by laser cladding. App. Surf. Sci. 2024, 670, 160720. [Google Scholar] [CrossRef]
- Li, S.Z.; Huang, K.P.; Zhang, Z.J.; Zheng, C.J.; Li, M.K.; Wang, L.L.; Wu, K.K.; Tan, H.; Yi, X.M. Wear mechanisms and micro-evaluation of WC + TiC particle-reinforced Ni-based composite coatings fabricated by laser cladding. Mat. Charct. 2023, 197, 112699. [Google Scholar] [CrossRef]
- Fan, Z.Z.; Ren, W.B.; Zuo, W.H.; Wang, Y.J. Comparative study on the reinforcement effects of WC and TiC in the laser cladding layer of Ti-6Al-4V alloy. J. Manuf. Proc. 2025, 134, 589–602. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, L.; Sun, J.; Wu, W.; Yu, T. Microstructure evolution and wear resistance of in-situ synthesized (Ti, Nb) C ceramic reinforced Ni204 composite coatings. Ceram. Int. 2022, 48, 17518–17528. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Zhang, C.H.; Wu, C.L.; Zhang, J.B.; Abdullah, A.O. Phase evolution and wear resistance of in situ synthesized V8C7 particles reinforced Fe-based coating by laser cladding. Opt. Laser Technol. 2018, 105, 58–65. [Google Scholar] [CrossRef]
- Rutter, J.W.; Chalmers, B. A prismatic substructure formed during solidification of metals. Can. J. Phys. 1953, 31, 15–39. [Google Scholar] [CrossRef]
- Peng, Y.B.; Zhang, W.; Li, T.C.; Zhang, M.Y.; Wang, L.; Song, Y.; Hu, S.H.; Hu, Y. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int. J. Refract. Met. Hard Mater. 2019, 84, 105044. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Z.; Wang, H.; Li, K.; Shi, W.; Jiao, T. Effect of WC Content on Microstructure and Properties of CoCrFeNi HEA Composite Coating on 316L Surface via Laser Cladding. Materials 2023, 16, 2706. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Z.; Li, K.; Shi, W.; Zhao, Y.; He, M. Microstructures and Mechanical Properties of an AlCoCrNiFe HEA/WC Reinforcing Particle Composite Coating Prepared by Laser Cladding. Materials 2022, 15, 8020. [Google Scholar] [CrossRef]
- Cao, Q.Z.; Fan, L.; Chen, H.Y.; Hou, Y.; Dong, L.H.; Ni, Z.W. Wear behavior of laser cladded WC-reinforced Ni-based coatings under low temperature. Trib. Inter. 2022, 176, 107939. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Li, Y.; Lu, B.W.; Tan, N.; Cai, L.R.; Yong, Q.S. Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating. Opt. Laser Technol. 2022, 155, 108449. [Google Scholar] [CrossRef]
- Jin, H.T.; Luo, F.Y.; Chen, Z.H.; Luo, Y.Z.; Shi, W.Q.; Huang, J. Mechanical properties and corrosion resistance analysis of Fe-based amorphous −2 % CNTs coatings with low crack prepared by laser cladding. Diam. Relat. Mater. 2025, 155, 112288. [Google Scholar] [CrossRef]
- Luo, F.Y.; Wang, S.S.; Shi, W.Q.; Zhao, Y.; Xiong, Z.Y.; Huang, J. Corrosion resistance and wear behavior of CoCrFeNiMn@ Gr high entropy alloy-based composite coatings prepared by laser cladding. J. Mater. Res. Technol. 2024, 33, 3769–3789. [Google Scholar] [CrossRef]
- Gu, Z.; Xi, S.Q.; Sun, C.F. Microstructure and properties of laser cladding and CoCr2.5FeNi2Tix high-entropy alloy composite coatings. J. Alloys Compd. 2020, 819, 152986. [Google Scholar] [CrossRef]
- Zhang, H.F.; Zhang, S.; Wu, H.; Wang, R.; Zhang, C.H.; Wu, C.L.; Chen, J.; Chen, H.T. brittle intermetallic compounds. Surf. Coat. Technol. 2024, 479, 130558. [Google Scholar] [CrossRef]
- Luo, F.; Wang, S.; Shi, W.; Zhao, Y.; Xiong, Z.; Huang, J. Wear behavior and corrosion resistance of laser-clad Ni60-1% carbon nanotubes coating. Surf. Coat. Technol. 2024, 482, 130686. [Google Scholar] [CrossRef]
C | Si | Mn | Fe | S | P |
---|---|---|---|---|---|
0.15 | 0.15 | 0.25 | Bal. | 0.11 | 0.12 |
Samples | Ni60 (wt. %) | WC (wt. %) | NbC (wt. %) |
---|---|---|---|
S1 | 90 | 10 | 0 |
S2 | 90 | 7.5 | 2.5 |
S3 | 90 | 5.0 | 5.0 |
S4 | 90 | 2.5 | 7.5 |
S5 | 90 | 0 | 10 |
Samples | Wear Depth (μm) | Wear Volume (mm) | Wear Rate (mm3 N−1·m−1) |
---|---|---|---|
S1 | 27.81 | 3.56 × 10−3 | 1.1804 × 10−7 |
S2 | 36.96 | 2.11 × 10−3 | 7.00945 × 10−7 |
S3 | 8.986 | 7.66 × 10−3 | 2.53985 × 10−7 |
S4 | 131.055 | 7.80 × 10−3 | 2.58627 × 10−7 |
S5 | 54.04 | 2.23 × 10−3 | 7.39407 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliye, A.; Xiao, Z.; Gao, C.; Shi, W.; Huang, J. Preparation of WC + NbC Particle-Reinforced Ni60-Based Composite Coating by Laser Cladding on Q235 Steel. Coatings 2025, 15, 670. https://doi.org/10.3390/coatings15060670
Aliye A, Xiao Z, Gao C, Shi W, Huang J. Preparation of WC + NbC Particle-Reinforced Ni60-Based Composite Coating by Laser Cladding on Q235 Steel. Coatings. 2025; 15(6):670. https://doi.org/10.3390/coatings15060670
Chicago/Turabian StyleAliye, Aishan, Zhixuan Xiao, Chao Gao, Wenqing Shi, and Jiang Huang. 2025. "Preparation of WC + NbC Particle-Reinforced Ni60-Based Composite Coating by Laser Cladding on Q235 Steel" Coatings 15, no. 6: 670. https://doi.org/10.3390/coatings15060670
APA StyleAliye, A., Xiao, Z., Gao, C., Shi, W., & Huang, J. (2025). Preparation of WC + NbC Particle-Reinforced Ni60-Based Composite Coating by Laser Cladding on Q235 Steel. Coatings, 15(6), 670. https://doi.org/10.3390/coatings15060670