Effect of Si on Mechanical Properties and Oxide Film Formation of AFA Alloy at Low Oxygen Pressure
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Preparation
2.2. Mechanical Properties Test
- (1)
- Tensile test
- (2)
- Hardness test
2.3. Oxidation Experiment
2.4. Microstructure Examination and Analysis
3. Results and Discussion
3.1. Effect of Si Content on MicroStructure of Alloy After Annealing
3.1.1. Thermodynamic Analysis
3.1.2. Microstructure Analysis
3.2. Influence of Si Content on Mechanical Properties of Alloys
3.3. Effect of Si Content on Oxidation in Low-Oxygen Environment
3.3.1. Surface and Cross-Sectional Microstructure Analysis
3.3.2. Thermodynamic Analysis of Oxidation Products
3.3.3. Oxidation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Towfighi, J.; Sadrameli, M.; Niaei, A. Coke formation mechanisms and coke inhibiting methods in pyrolysis furnaces. J. Chem. Eng. Jpn. 2002, 35, 923–937. [Google Scholar] [CrossRef]
- Kofstad, P. High Temperature Corrosion; Elsevier Applied Science: London, UK, 1988. [Google Scholar]
- Opila, E.J. Volatility of common protective oxides in high-temperature water vapor: Current understanding and unanswered questions. Mater. Sci. Forum 2004, 461–464, 765–774. [Google Scholar] [CrossRef]
- Pint, B.A.; Peraldi, R.; Maziasz, P.J. The use of model alloys to develop corrosion-resistant stainless steels. Mater. Sci. Forum 2004, 461–464, 815–822. [Google Scholar] [CrossRef]
- Ortiz, L.; Yang, K.Z.; Church, B. Performance of alumina-forming alloys under coking–decoking cycles. Ind. Eng. Chem. Fundam. 2020, 59, 11485–11493. [Google Scholar] [CrossRef]
- Ortiz, L.; Church, B. Rate of coke formation of centrifugally cast austenitic chromia-forming and alumina-forming alloys in coking conditions. Corros. Sci. 2021, 190, 109637. [Google Scholar] [CrossRef]
- Yin, F.; Wu, C.; Li, Z.; Zhao, M.; Liu, Y. Phase equilibrium of the Fe-Cr-Ni-Al quaternary system at 900 °C. J. Phase Equilib. Diff. 2013, 34, 181–187. [Google Scholar] [CrossRef]
- Kitano, M.; Ishii, H.; Shirai, Y.; Ohmi, T. High-corrosion-resistant Al2O3 passivation-film formation by selective oxidation on austenitic stainless steel containing Al. J. Vac. Sci. Technol. A 2011, 29, 021002. [Google Scholar] [CrossRef]
- Liu, L.; Fan, C.; Sun, H.; Chen, F.; Guo, J.; Huang, T. Research progress of alumina-forming austenitic stainless steels: A review. Materials 2022, 15, 3515. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Brady, M.P.; Santella, M.L.; Bei, H.; Maziasz, P.J.; Pint, B.A. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels. Metall. Mater. Trans. A 2011, 42, 922–931. [Google Scholar] [CrossRef]
- Gwalani, B.; Escobar, J.; Song, M.; Thomas, J.; Silverstein, J.; Chuang, A.C.; Singh, D.; Brady, M.P.; Yamamoto, Y.; Watkins, T.R.; et al. Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys. Acta Mater. 2024, 263, 119494. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Wu, C.; Peng, H.; Chen, J.; Zhu, X.; Tu, H.; Wang, J.; Su, X. Effect of surface finishing on the early-stage oxidation of alumina forming austenitic (AFA) alloys under low oxygen pressure. Corros. Sci. 2025, 247, 112774. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, Y.; Gesmundo, F. The oxidation of three Ni–6Si–xAl alloys in 1atm O2 at 1000 °C. Corros. Sci. 2006, 48, 1–22. [Google Scholar] [CrossRef]
- Wu, Y.; Niu, Y. High temperature scaling of Ni–xSi–10 at.% Al alloys in 1atm of pure O2. Corros. Sci. 2007, 49, 1656–1672. [Google Scholar] [CrossRef]
- Wu, Y.; Niu, Y. Effect of silicon additions on the oxidation of a Ni–6at.%Al alloy at 1273K. Scr. Mater. 2005, 53, 1247–1252. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Ni, C.S.; Niu, Y. The effect of Si additions on the high temperature oxidation of a ternary Ni–10Cr–4Al alloy in 1atm O2 at 1100 °C. Corros. Sci. 2009, 51, 511–517. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, X.J.; Wu, Y.; Gesmundo, F. The third-element effect in the oxidation of Ni–xCr–7Al (x=0, 5, 10, 15at.%) alloys in 1atm O2 at 900–1000 °C. Corros. Sci. 2006, 48, 4020–4036. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wu, Y.; Gesmundo, F.; Niu, Y. The effect of Si additions on the high-temperature oxidation of a ternary Ni–10Cr–4Al alloy in 1 atm O2 at 900–1000 °C. Oxid. Met. 2008, 69, 299–315. [Google Scholar] [CrossRef]
- Dunning, J.S.; Alman, D.E.; Rawers, J.C. Influence of silicon and aluminum additions on the oxidation resistance of a lean-chromium stainless steel. Oxid. Met. 2002, 57, 409–425. [Google Scholar] [CrossRef]
- Kumar, A.; Douglass, D.L. Modification of the oxidation behavior of high-purity austenitic Fe-14Cr-14Ni by the addition of silicon. Oxid. Met. 1976, 10, 1–22. [Google Scholar] [CrossRef]
- Mahboubi, S.; Zurob, H.S.; Botton, G.A.; Kish, J.R. Silicon effects on the wet oxidation of type 310 stainless steel. Corros. Sci. 2018, 143, 376–389. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Y.; Jing, T.; Peng, H.; Wen, Y. Oxidation resistance and mechanical properties of Al2O3-forming and SiO2-forming austenitic stainless steels between 1023 K and 1173 K. Corros. Sci. 2023, 211, 110914. [Google Scholar] [CrossRef]
- Joeris, J.; Scheld, W.S.; Uhlenbruck, S.; Sohn, Y.J.; Sebold, D.; Guillon, O.; Vaßen, R. Preparation of highly durable columnar suspension plasma spray (sps) coatings by pre-oxidation of the conicraly bondcoat. Coatings 2023, 13, 1575. [Google Scholar] [CrossRef]
- Yu, D.; Gong, J.; Sun, J.; Qian, Y. Behaviour and mechanisms of alkali metal sulphate-induced cyclic hot corrosion in relation to gradients and preoxidised mcraly-type coatings. Coatings 2022, 12, 912. [Google Scholar] [CrossRef]
- Ohkubo, N.; Miyakusu, K.; Uematsu, Y.; Kimura, H. Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel. ISIJ Int. 1994, 34, 764–772. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Santella, M.L.; Liu, C.T.; Evans, N.D.; Maziasz, P.J.; Brady, M.P. Evaluation of Mn substitution for Ni in alumina-forming austenitic stainless steels. Mater. Sci. Eng. A 2009, 524, 176–185. [Google Scholar] [CrossRef]
- Chen, L.; Wang, M.; Wang, Q.; Gao, Y.; Dong, H.; Che, H.; Zhou, Z. Microstructure and mechanical property evolution of an AFA alloy with simple composition design during ageing at 700 °C. Mater. Sci. Eng. A 2020, 779, 139157. [Google Scholar] [CrossRef]
- Onishi, T.; Nakakubo, S.; Takeda, M. Calculations of internal oxidation rate equations and boundary conditions between internal and external oxidation in silicon containing steels. Mater. Trans. 2010, 51, 482–487. [Google Scholar] [CrossRef]
- Wang, B.; Wang, S.; Liu, B.; Zhu, Q.; Li, X. Oxide film prepared by selective oxidation of stainless steel and anti-coking behavior during n-hexane thermal cracking. Surf. Coat. Technol. 2019, 378, 1249522. [Google Scholar] [CrossRef]
- Tunthawiroon, P.; Li, Y.; Chiba, A. Influences of alloyed Si on the corrosion resistance of Co–Cr–Mo alloy to molten Al by iso-thermal oxidation in air. Corros. Sci. 2015, 100, 428–434. [Google Scholar] [CrossRef]
- Feng, S.; Dai, H.; Sun, X.; Jiang, K.; Qiu, Z.; Chen, X.; Chen, G. New insight of the enhanced oxidation resistance of T91 steel in 450 °C liquid lead-bismuth eutectic by adding Al and Si element. J. Mater. Sci. Technol. 2025, 204, 29–46. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, W.; Shi, Q.; Li, Y.; Shan, Y.; Yang, K. Silicon enhances high temperature oxidation resistance of SIMP steel at 700 °C. Corros. Sci. 2020, 167, 108519. [Google Scholar] [CrossRef]
- Geng, D.; Yu, H.; Yuan, X.; Kondo, S.; Miyazawa, J.; Kasada, R. Effects of Cr and Si addition on the high-temperature oxidation resistance in high-Mn alumina-forming oxide dispersion strengthened austenitic steels. Nucl. Mater. Energy 2024, 38, 101572. [Google Scholar] [CrossRef]
- Huntz, A.M.; Bague, V.; Beauplé, G.; Haut, C.; Sévérac, C.; Lecour, P.; Longaygue, X.; Ropital, F. Effect of silicon on the oxidation resistance of 9% Cr steels. Appl. Surf. Sci. 2003, 207, 255–275. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wang, Z.; Wang, J.; Xu, W. Role of Si in optimizing the oxidation behavior of Cr-Si alloyed press-hardened steels during hot stamping. Mater. Charact. 2025, 222, 114842. [Google Scholar] [CrossRef]
- Jian, P.; Jian, L.; Bing, H.; Xie, G. Oxidation kinetics and phase evolution of a Fe–16Cr alloy in simulated SOFC cathode atmosphere. J. Power Sources 2006, 158, 354–360. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, Y.; Dong, N.; Fang, X.; Quan, X.; Cui, Y.; Han, P. The influence of temperature on the oxidation mechanism in air of hr3c and aluminum-containing 22Cr–25Ni austenitic stainless steels. Oxid. Met. 2018, 89, 713–730. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Li, J.-S.; Xu, W.; Wang, X.-Z. Oxidation and dissolution behavior of FeCrNiAl based high entropy alloy and alumina-forming austenitic steel exposed to lead-bismuth eutectic (LBE). Corros. Sci. 2024, 227, 111693. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Y.; Rong, L.; Yan, D. Effect of mn on the growth behavior of pre-oxidized film on the heat-resistant steel surface. High Temp. Corr. Mater. 2024, 101, 729–754. [Google Scholar] [CrossRef]
- Wagner, C. Reaktionstypen bei der oxydation von legierungen. Z. Elektrochem. 1959, 63, 772–782. [Google Scholar] [CrossRef]
- Lobnig, R.; Schmidt, H.; Hennesen, K.; Grabke, H. Diffusion of cations in chromia layers grown on iron-base alloys. Oxid. Met. 1992, 37, 81–93. [Google Scholar] [CrossRef]
Sample | Fe | Ni | Cr | Al | Mn | Si | C |
---|---|---|---|---|---|---|---|
AFA-0 Si | 48.6 | 25.1 | 20.8 | 4.5 | 1 | - | * |
AFA-0.5 Si | 48.8 | 25.4 | 20.1 | 4.4 | 0.8 | 0.5 | * |
AFA-1 Si | 48.5 | 25.2 | 19.8 | 4.5 | 0.9 | 1.1 | * |
AFA-1.5 Si | 46.9 | 25.6 | 20.4 | 4.5 | 1 | 1.6 | * |
Parameter Name | Parameter Value |
---|---|
Temperature | 1100 °C |
Time | 10 h |
Atmosphere | (0.15%~0.25%) H2O + 96% Ar + 4% H2 |
Dew point | −13 °C~−17 °C |
Oxygen pressure | 10−18~10−16 bar |
Sample | Phase | Fe | Cr | Ni | Al | Mn | Si |
---|---|---|---|---|---|---|---|
AFA-0 Si | FCC | 48.6 | 21.3 | 23 | 6.2 | 0.9 | 0 |
B2-NiAl | 17.6 | 8.1 | 38.9 | 35.3 | 0.1 | 0 | |
Cr-rich Phase | 14.1 | 62.5 | 15.7 | 6.7 | 1 | 0 | |
AFA-0.5 Si | FCC | 48.6 | 21.1 | 22.7 | 6.1 | 1 | 0.5 |
B2-NiAl | 22.6 | 11.4 | 33.6 | 31.2 | 0.5 | 0.7 | |
Cr-rich Phase | 15.8 | 68.2 | 10.6 | 4.1 | 1.1 | 0.2 | |
AFA-1 Si | FCC | 48.4 | 21.1 | 22.2 | 6.1 | 1.1 | 1.1 |
B2-NiAl | 22.3 | 13.1 | 35.5 | 28.7 | 0.1 | 0.3 | |
Cr-rich Phase | 10.7 | 67.4 | 17.1 | 3.5 | 1.1 | 0.2 | |
AFA-1.5 Si | FCC | 48.6 | 20.8 | 22 | 6 | 1.1 | 1.5 |
B2-NiAl | 22.8 | 12 | 35.8 | 28.9 | 0.1 | 0.4 | |
Cr-rich Phase | 15.5 | 64.9 | 10.2 | 7.9 | 1.2 | 0.3 |
Number | O | Al | Si | Cr | Mn | Fe | Ni |
---|---|---|---|---|---|---|---|
1 | 59.5 | 0.1 | 0.2 | 30.1 | 6.3 | 3.3 | 0.5 |
2 | 56.9 | 31.9 | 0.2 | 3.9 | 0.2 | 4.6 | 2.3 |
3 | 56.5 | 0.2 | 0.2 | 27.7 | 9.8 | 3.9 | 1.7 |
4 | 51.1 | 34.6 | 0.1 | 4.7 | 0.2 | 6.7 | 2.6 |
5 | 57.2 | 0.3 | 0.2 | 27.2 | 9.5 | 3.9 | 1.7 |
6 | 46.8 | 31.9 | 0.2 | 5.6 | 0.3 | 10.6 | 4.6 |
7 | 58.2 | 0.1 | 0.1 | 27.3 | 8.3 | 4.9 | 1.1 |
8 | 49.3 | 33.6 | 0.3 | 4.1 | 0.1 | 8.6 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Q.; Jiang, X.; Wu, C.; Chen, J.; Zhu, X.; Liu, Y.; Su, X. Effect of Si on Mechanical Properties and Oxide Film Formation of AFA Alloy at Low Oxygen Pressure. Coatings 2025, 15, 602. https://doi.org/10.3390/coatings15050602
Jia Q, Jiang X, Wu C, Chen J, Zhu X, Liu Y, Su X. Effect of Si on Mechanical Properties and Oxide Film Formation of AFA Alloy at Low Oxygen Pressure. Coatings. 2025; 15(5):602. https://doi.org/10.3390/coatings15050602
Chicago/Turabian StyleJia, Qijun, Xiaoqiang Jiang, Changjun Wu, Junxiu Chen, Xiangying Zhu, Ya Liu, and Xuping Su. 2025. "Effect of Si on Mechanical Properties and Oxide Film Formation of AFA Alloy at Low Oxygen Pressure" Coatings 15, no. 5: 602. https://doi.org/10.3390/coatings15050602
APA StyleJia, Q., Jiang, X., Wu, C., Chen, J., Zhu, X., Liu, Y., & Su, X. (2025). Effect of Si on Mechanical Properties and Oxide Film Formation of AFA Alloy at Low Oxygen Pressure. Coatings, 15(5), 602. https://doi.org/10.3390/coatings15050602