The Effect of the Addition of Crystalline Nanocellulose (CNC) and Radiation Treatment on the Properties of Edible Films Based on a Cornstarch–Poly(Vinyl Alcohol) System
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Films Preparation
2.3. Irradiation
2.4. Examination of Radiation Effects on Cellulose Preparations
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. Electron Spin Resonance (ESR)
2.4.3. Gas Chromatography (GC)
2.5. Characterization of the Films
2.5.1. Mechanical Properties
2.5.2. Contact Angle to Water
2.5.3. Swelling in Water
2.5.4. Solubility in Water
2.5.5. Moisture Uptake
2.5.6. Gel Fraction Analysis
2.5.7. Diffuse Reflectance Spectroscopy (DRS)
2.5.8. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Evaluation of the Properties of the Selected Celluloses
3.1.1. SEM Studies of Celluloses
3.1.2. Electron Spin Resonance (ESR)
3.1.3. Gas Chromatography
3.2. Evaluation of the Properties of the Starch:PVA/CNC Films
3.2.1. Overall Discussion of the Processes Taking Place in the Starch–PVA–CNC System
3.2.2. Mechanical Properties of the Starch/PVA/CNC Films
3.2.3. Contact Angle of the Films to Water
3.2.4. Swelling of the Films in Water
3.2.5. Solubility of the Films in Water
3.2.6. Moisture Uptake
3.2.7. Gel Fraction
3.2.8. Scanning Electron Microscopy
3.2.9. UV–VIS Diffuse Reflectance Spectroscopy
3.2.10. Discussion of the Effect of the Addition of CNC on the Films’ Properties in Relation to the Literature Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jimenez, A.; Fabra, M.J.; Talens, P.; Chiralt, A. Edible and biodegradable starch films: A review. Food Bioprocess. Tech. 2012, 5, 2058–2076. [Google Scholar] [CrossRef]
- Cabusas Alvarado, M. Recent progress in polyvinyl alcohol (PVA)/nanocellulose composite films for packaging applications: A comprehensive review of the impact on physico-mechanical properties. Food Bioeng. 2024, 3, 189–209. [Google Scholar] [CrossRef]
- Bangar, S.P.; Purewal, S.S.; Trif, M.; Maqsood, S.; Kumar, M.; Manjunatha, V.; Alexandru Rusu, V. Functionality and applicability of starch-based films: An eco-friendly approach. Foods 2021, 10, 2181. [Google Scholar] [CrossRef]
- Abedi-Firoozjah, R.; Chabook, N.; Rostami, O.; Heydari, M.; Kolahdouz-Nasiri, A.; Javanmardi, F.; Khadije, K.; Khaneghah, A.M. PVA/starch films: An updated review of their preparation, characterization, and diverse applications in the food industry. Polym. Test. 2023, 118, 107903. [Google Scholar] [CrossRef]
- Amini, M.; Rasouli, M.; Shoja, S.; Mozaffar, M.; Bekeschus, S. Preserving wheat flour with cellulose nanocomposite packaging and cold plasma treatment: Eliminating fungal contamination and improving functionality. Innov. Food Sci. Emerg. Technol. 2024, 93, 103632. [Google Scholar] [CrossRef]
- Abramowska, A.; Cieśla, K.A.; Buczkowski, M.J.; Nowicki, A.; Głuszewski, W.J. The influence of ionizing radiation on the properties of starch:PVA films. Nukleonika 2015, 60, 669–677. [Google Scholar] [CrossRef]
- Cieśla, K.; Abramowska, A.; Boguski, J.; Drewnik, J. The effect of PVA type and radiation treatment on the properties of starch:PVA films. Radiat. Phys. Chem. 2017, 141, 142–148. [Google Scholar] [CrossRef]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; Gonzalez-Martinez, C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Aydin, A.A.; Ilberg, V. Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol: Starch blends. Carbohyd. Polym. 2016, 136, 441–448. [Google Scholar] [CrossRef]
- Mathew, S.; Jayakumar, A.; Kumar, V.P.; Mathew, J.; Radhakrishnan, E.K. One-step synthesis of eco-friendly boiled rice starch blended polyvinylalcohol bionanocomposite films decorated with in situ generated silver nanoparticles for food packaging purpose. Int. J. Biol. Macromol. 2019, 139, 475–485. [Google Scholar] [CrossRef]
- Tak, H.-Y.; Yun, Y.-H.; Lee, C.-M.; Yoon, S.-D. Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohyd Polym. 2019, 208, 261–268. [Google Scholar] [CrossRef]
- Parvin, F.; Khan, M.; Saadat, A.H.M.; Khan, M.A.H.; Islam, J.M.M.; Ahmed, M.; Gafur, M.A. Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend films. J. Polym. Environ. 2011, 19, 1013–1022. [Google Scholar] [CrossRef]
- Senna, M.M.; El-Shahat, H.A.; El Naggar, A.W.M. Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res. 2011, 18, 763–771. [Google Scholar] [CrossRef]
- Naznin, M.; Abedin, M.-Z.; Khan, M.-A.; Gafur, M.D. Influence of Acacia Catechu extracts and urea and gamma irradiation on the mechanical properties of starch/PVA-based material. Int. Sch. Res. Netw. ISRN Polym. Sci. 2012, 12, 348685. [Google Scholar] [CrossRef]
- Drewnik, J.; Cieśla, K. The effect of composition and ionising radiaton on the migration phenomena in starch-PVA films placed in isooctane. In Book of Abstracts, Proceedings of 9th International Conference on Modification, Degradation and Stabilization of Polymers, Cracow, Poland, 4–8 September 2016; Industrial Chemistry Research Institute: Warsaw, Poland, 2016. [Google Scholar]
- Cano, A.; Fortunati, E.; Cháfer, M.; González-Martıíínez, C.; Chiralt, A.; Kenny, J.M. Effect of cellulose nanocrystals on the properties of pea starch-poly(vinyl alcohol) blend films. J. Mater. Sci. 2015, 50, 6979–6992. [Google Scholar] [CrossRef]
- Kim, M.H.; Kyoo, L.H.; Lee, H.S. Transparent and high gas barrier films based on poly(vinyl alcohol)/grapheme oxide composites. Thin Solid. Films 2011, 519, 7766–7771. [Google Scholar] [CrossRef]
- Yao, K.; Cai, J.; Liu, M.; Yu, Y.; Xiong, H.; Tang, S.; Ding, S. Structure and properties of starch/PVA/nano-SiO2 hybrid films. Carbohyd. Polym. 2011, 86, 1784–1789. [Google Scholar] [CrossRef]
- Priya, B.; Gupta, V.K.; Pathania, D.; Singha, A.S. Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohyd. Polym. 2014, 109, 171–179. [Google Scholar] [CrossRef]
- Das, K.; Ray, D.; Bandyopadhyay, N.R.; Sahoo, S.; Mohanty, A.K.; Misra, M. Physico-mechanical properties of the jute micro/nanofibril reinforce starch/polyvinyl alcohol biocomposite films. Compos. Part. B-Eng. 2011, 42, 376–381. [Google Scholar] [CrossRef]
- Stoica-Guzun, A.; Stroescu, M.; Jipa, I.; Dobre, L.; Zaharescu, T. Effect of γ irradiation on poly(vinylalcohol) and bacterial cellulose composites used as packaging. Radiat. Phys. Chem. 2013, 84, 200–204. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef] [PubMed]
- Jonoobi, R.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 2015, 22, 935–969. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresnee, A.; Huang, J.; Ling, N. Advances in cellulose nanomaterials. Cellulose 2018, 25, 2151–2189. [Google Scholar] [CrossRef]
- Kagarzadeh, H.; Huang, J.; Lin, N.; Ahmad, I.; Mariano, M.A.; Gałęski, A. Recent developments in nanocellulose-based biodegradablepolymers, thermoplastic polymers, and porous nanocomposites. Prog. Polym. Sci. 2018, 87, 197–227. [Google Scholar] [CrossRef]
- Monteiro Cordeiro de Azeredo, H.; Camparelli Mattoso, L.H.; Habig McHugh, T. Nanocomposites in Food Packaging—A review. In Advances in Deverse Industrial Applications of Nanocomposites; Boreddy, R., Ed.; Intech Open FRSC: London, UK, 2011; Chapter 4; pp. 157–177. ISBN 978-953-307/978-953-51-4511-0. [Google Scholar]
- Cieśla, K. Biodegradowalna Folia na Bazie Układu Skrobia: PVA Oraz Sposób jej Wytwarzania (Biodegradable Film Based on the Starch: PVA System and the Method for Manufacturing the Same). Polish Patent No P.429513, 24 March 2023. [Google Scholar]
- Jipa, J.M.; Stroescu, M.; Stoica-Guzun, A.; Dobre, T.; Jinga, S.; Zaharescu, T. Effect of gamma irradiation on biopolymer composite films of poly(vinylalcohol) and bacterial cellulose. Nucl. Instrum. Meth B 2012, 278, 82–87. [Google Scholar] [CrossRef]
- Popescu, M.-C.; Dogaru, B.-I.; Goanta, M.; Timpu, D. Structural and morphological evaluation of CNC reinforced PVA/starch biodegradable films. Int. J. Biol. Macromol. 2018, 116, 385–393. [Google Scholar] [CrossRef]
- Goncalves de Oliveira Filho, J.; Albiero, B.R.; Cipriano, L.; de Oliveira Nobre Bezerra, C.; Campos Alencar Oldoni, F.; Buranelo Egea, M.; Monteiro Cordeiro de Azeredo, H.; Ferreira, M.D. Arrowroot starch-based films incorporated with a carnauba wax nanoemulsion, cellulose nanocrystals, and essential oils: A new functional material for food packaging applications. Cellulose 2021, 28, 6499–6511. [Google Scholar] [CrossRef]
- Qiao, J.; Dong, Y.; Chen, C.; Xie, J. Development and characterization of starch/PVA antimicrobial active films with controlled release property by utilizing electrostatic interactions between nanocellulose and lauroyl arginate ethyl ester. Int. J. Biol. Macromol. 2024, 261, 129415. [Google Scholar] [CrossRef]
- Almeida, T.; Karamysheva, A.; Valente, B.F.A.; Silva, J.M.; Braz, M.; Almeida, A.; Silvestre, A.J.D.; Vilela, C.; Freire, C.S.R. Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocolloid. 2023, 144, 108934. [Google Scholar] [CrossRef]
- Jia, R.-J.; Teng, K.-Y.; Huang, J.-Y.; Wei, X.; Qin, Z.-Y. Hydrogen bonding crosslinking of starch-polyvinyl alcohol films reinforced by ultrasound-assisted and cellulose nanofibers dispersed cellulose nanocrystals. Starch–Stärke 2022, 74, 2100227. [Google Scholar] [CrossRef]
- Jia, Y.; Hu, C.; Shi, P.; Xu, Q.; Zhu, W.; Liu, R. Effects of cellulose nanofibrils/graphene oxide hybrid nanofiller in PVA nanocomposites. Int. J. Biol. Macromol. 2020, 161, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Luo, Y.; Lv, Z.; Xunwen Sun, X.; Tian, Y.; Zhang, X. Melt-processed poly (vinyl alcohol)/corn starch/nanocellulose composites with improved mechanical properties. .Int. J. Biol. Macromol. 2021, 183, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Noshirvani, N.; Hong, W.; Ghanbarzadeh, B.; Fasihi, H.; Montazami, R. Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int. J. Biol. Macromol. 2018, 107, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Handoko, F.; Yusuf, Y. Synthesis and physicochemical properties of poly(vinyl)alcohol nanocomposites reinforced with nanocrystalline cellulose from tea (Camellia sinensis) waste. Materials 2021, 14, 7154. [Google Scholar] [CrossRef]
- Daza-Orsini, S.M.; Medina-Jaramillo, C.; Caicedo-Chacon, W.D.; Ayala-Valencia, G.; López-Córdoba, A. Isolation of taro peel cellulose nanofibers and its application in improving functional properties of taro starch nanocomposites films. Int. J. Biol. Macromol. 2024, 273, 132951. [Google Scholar] [CrossRef]
- Guimarăes, M., Jr.; Botaro, V.R.; Monteiro Novack, K.; Gomes Teixeira, F.; Denzin Tonoli, G.H. Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Ind. Crop Prod. 2015, 70, 72–83. [Google Scholar] [CrossRef]
- Cieśla, K.; Abramowska, A. Effect of absorbed dose on starch:PVA films irradiated with gamma rays. Radiat. Phys. Chem. 2021, 180, 109290. [Google Scholar] [CrossRef]
- Cieśla, K.; Abramowska, A. The influence of electron and gamma irradiation on the properties of starch: PVA films. The effect of irradiation dose. Nukleonika 2021, 66, 3–9. [Google Scholar] [CrossRef]
- Khan, R.A.; Salmieri, S.; Dussault, D.; Uribe-Calderon, J.; Kamal, M.R.; Safrany, A.; Lacroix, M. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. J. Agric. Food Chem. 2010, 58, 7878–7885. [Google Scholar] [CrossRef]
- Cieśla, K.A.; Nowicki, A.; Buczkowski, M.J. Radiation modification of the functional properties of the edible films prepared using starch and starch—Lipid system. Nukleonika 2010, 55, 233–242. [Google Scholar]
- Głuszewski, W.; Boruc, B.; Kubera, H.; Abbasowa, D. The use of DRS and GC to studies the effects of ionizing radiation on paper artifacts. Nukleonika 2015, 60, 665–668. [Google Scholar] [CrossRef]
- Głuszewski, W.; Cieśla, K.; Łyczko, K. Studies of the radical processes in selected polysaccharides by gas chromatography. Nukleonika, 2025; to be submitted. [Google Scholar]
- Leonor, S.J.; Gómez, J.A.; Kinoshita, A.; Calandreli, I.; Tfouni, E.; Baffa, O. Spectroscopic properties of irradiated gum arabic. Food Chem. 2013, 141, 1860–1864. [Google Scholar] [CrossRef] [PubMed]
- Sasai, Y.; Kondo, S.-I.; Kuzuya, M. Nature of Mechanoradical Formation of Substituted Celluloses as Studied by Electron Spin Resonance. Chem. Pharm. Bull. 2004, 52, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Rintarak, P.; Pattanasiri, B.; Anupong, S.; Ninlaphruk, S.; Dangtip, S. Electron Spin Resonance Analysis of γ-induced free radicals in riceberry rice grain. Proceedings of the Siam Physics Congress 2018 (SPC2018): A Creative Path to Sustainable Innovation. J. Phys. Conf. Ser. 2018, 1144, 12173. [Google Scholar] [CrossRef]
- Wencka, M.; Wichlacz, K.; Kasprzyk, H.; Lijewski, S.; Hoffmann, S.K. Free radicals and their electron spin relaxation in cellobiose. X-band and W-band ESR and electron spin echo studies. Cellulose 2007, 14, 183–194. [Google Scholar] [CrossRef]
- Yamaoki, R.; Kimura, S.; Ohta, M. Electron spin resonance characterization of radical components in irradiated black pepper skin and core. Radiat. Phys. Chem. 2011, 80, 282–1288. [Google Scholar] [CrossRef]
- Kameya, H.; Ukai, M.; Shimoyama, Y. An ESR study of radiation induced radicals in glucose polymers. Radiat. Phys. Chem. 2013, 84, 232–234. [Google Scholar] [CrossRef]
- Wach, R.A.; Mitomo, H.; Yoshii, F. ESR investigation on gamma-irradiated methylcellulose and hydroxyethylcellulose in dry state and in aqueous solution. J. Radioanal. Nucl. Chem. 2004, 261, 113–118. [Google Scholar] [CrossRef]
- Cieśla, K.; Grabowska, M. The effect of treatment with HEMA and gamma irradiation on the starch:PVA films studied by differential scanning calorimetry and thermogravimetry. Radiat. Phys. Chem. 2022, 197, 110168. [Google Scholar] [CrossRef]
- Wang, S.-M.; Huang, Q.-Z.; Wang, Q.-S. Study on the synergetic degradation of chitosan with ultraviolet light and hydrogen peroxide. Carbohyd Res. 2005, 340, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhang, H.; Song, Y.; Zhang, J.; Yang, H.; Jiang, L.; Dan, Y. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications. Appl. Surf. Sci. 2015, 342, 55–63. [Google Scholar] [CrossRef]
- von Sontag, C. Carbohydrates. In Radiation Chemistry. Present Status and Future Trends; Jonah, C.D., Rao, B.S.M., Eds.; Elsevier Sciences BV: Amsterdam, The Netherlands; London, UK; New York, NY, USA; Oxford, UK; Paris, France; Shannon, Ireland; Tokyo, Japan, 2001; pp. 481–511. [Google Scholar]
- Relleve, L.; Nagasawa, N.; Luan, L.Q.; Yagi, T.; Aranilla, C.; Abad, L.; Kume, T.; Yoshii, F.; dela Rosa, A. Degradation of carrageenan by radiation. Polym. Degrad. Stabil. 2005, 87, 403–410. [Google Scholar] [CrossRef]
- Sharpatyi, V.A. Radiation chemistry of polysaccharides. 1. Mechanism of carbon monoxide and formic acid formation. High. Energ. Chem. 2003, 37, 369–372. [Google Scholar] [CrossRef]
- .Akhter, S.; Allan, K.; Buchanan, D.; Cook, J.A.; Campion, A.; White, J.M. XPS and IR study of X-ray induced degradation of PVA polymer film. Appl. Surf. Sci. 1988, 35, 241–258. [Google Scholar] [CrossRef]
- El-Sawy, N.M.; El-Arnaouty, M.B.; Abdel, G. γ-irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polymer Plast. Technol. 2010, 49, 169–177. [Google Scholar] [CrossRef]
- Zainuddin; Hill, D.J.T.; Le, T.T. An ESR study on γ-irradiated poly(vinyl alcohol). Radiat. Phys. Chem. 2001, 62, 283–291. [Google Scholar] [CrossRef]
- Zagórski, Z.P.; Rafalski, A. Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem. 1998, 52, 257–260. [Google Scholar] [CrossRef]
- Milosavljevic, B.H.; Thomas, J.K. Effects of the degree of hydrolysis on radiation induced reactions in the poly(vinyl alcohol)–poly(vinyl acetate) system. Radiat. Phys. Chem. 2001, 62, 3–10. [Google Scholar] [CrossRef]
Substrate | G H2 µmol/J | GO2 µmol/J |
---|---|---|
MFC | 0.272 | 0.265 |
MCC | 0.252 | 0.234 |
NCC | 0.423 | 1.234 |
CNC Content wt% | Reference | Irradiated γ (25 kGy, Vacuum) | Irradiated EB (25 kGy, Air) | |||
---|---|---|---|---|---|---|
Elongation at Break Δl [%] | Young’s Modulus MPa | Elongation at Break Δl [%] | Young’s Modulus MPa | Elongation at Break Δl [%] | Young’s Modulus MPa | |
0 | 112.8 ± 15.9 | 847 ± 15 | 69.6 ± 14 | 753 ± 52 | 61.7 ± 15.9 | 757 ± 51 |
0.5 | 128.3 ± 21.2 | 880 ± 56 | 127.6 ± 22.3 | 855 ± 60 | 122.1 ± 24.9 | Nd |
1.0 | 153.2 ± 22.0 | 865 ± 21 | 118.8 ± 15.9 | 934 ± 28 | 139.8 ± 9.2 | 845 ± 10 |
2.5 | 128.2 ± 15.3 | 834 ± 26 | 96.1 ± 7.9 | 885 ± 69 | 124.5 ± 23.4 | 756 ± 53 |
5.0 | 95.6 ± 8.1 | 871 ± 36 | 81.6 ± 10.9 | 870 ± 28 | 105.3 ± 6.2 | 813 ± 47 |
7.5 | 70.2 ± 5.34 | 985 ± 48 | 69.2 ± 8.70 | 982 ± 55 | 73.1 ± 10.8 | 988 ± 25 |
10.0 | 68.2 ± 8.5 | 1191 ± 32 | 51.2 ± 8.3 | 1281 ± 29 | 43.0 ± 7.8 | 1228 ± 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśla, K.; Abramowska, A. The Effect of the Addition of Crystalline Nanocellulose (CNC) and Radiation Treatment on the Properties of Edible Films Based on a Cornstarch–Poly(Vinyl Alcohol) System. Coatings 2025, 15, 452. https://doi.org/10.3390/coatings15040452
Cieśla K, Abramowska A. The Effect of the Addition of Crystalline Nanocellulose (CNC) and Radiation Treatment on the Properties of Edible Films Based on a Cornstarch–Poly(Vinyl Alcohol) System. Coatings. 2025; 15(4):452. https://doi.org/10.3390/coatings15040452
Chicago/Turabian StyleCieśla, Krystyna, and Anna Abramowska. 2025. "The Effect of the Addition of Crystalline Nanocellulose (CNC) and Radiation Treatment on the Properties of Edible Films Based on a Cornstarch–Poly(Vinyl Alcohol) System" Coatings 15, no. 4: 452. https://doi.org/10.3390/coatings15040452
APA StyleCieśla, K., & Abramowska, A. (2025). The Effect of the Addition of Crystalline Nanocellulose (CNC) and Radiation Treatment on the Properties of Edible Films Based on a Cornstarch–Poly(Vinyl Alcohol) System. Coatings, 15(4), 452. https://doi.org/10.3390/coatings15040452