Study on the Effect of Coal Gangue Particle Size Distribution for the Preparation of Kaolin by Shaking Table Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Samples
2.1.1. Raw Materials
2.1.2. Samples
- (1)
- Stroke and stroke frequency of the sample
- (2)
- Fuller distribution and RRSB distribution of the sample
2.2. Testing Instruments
2.3. Testing Methodologies
- (1)
- Stroke and stroke frequency
- (2)
- Fuller distribution and RRSB distribution
2.4. Testing and Analysis
3. Results
3.1. Stroke and Stroke Frequency
3.1.1. Stroke
3.1.2. Stroke Frequency
3.2. Fuller Distribution
3.3. RRSB Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Lang, L.; Dong, C.X.; Qi, Z.; Zhang, Z.R.; Li, J.S. Comprehensive study on coal gangue-based geopolymer activated by phosphoric acid: From macroscale properties to molecular simulation. Constr. Build. Mater. 2024, 438, 137271. [Google Scholar] [CrossRef]
- Qin, Q.Z.; Geng, H.H.; Deng, J.S.; Su, X.B.; Chen, M.; Park, C. Al and other critical metals co-extraction from coal gangue through delamination pretreatment and recycling strategies. Chem. Eng. J. 2023, 477, 147036. [Google Scholar] [CrossRef]
- Wang, G.; He, X.; Yang, Y.L.; Xiong, M.Z.; Ji, Y.H.; Qin, B.K. Experimental study on activation of coal gangue and preparation of cementing materials. J. Phys. Conf. Ser. 2024, 2842, 012029. [Google Scholar] [CrossRef]
- Li, Y.; Xia, J.W.; Xia, Z.; Chen, M.W.; Wang, J.; Zhang, Y.H. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate. Constr. Build. Mater. 2022, 338, 127626. [Google Scholar]
- Ye, C.; Shen, Z.J.; Wang, Y.M.; Mei, N.; Li, C.X.; Liu, Y.J.; Ma, W.H.; Zhang, C.; Wang, D.Y. Tracing and quantifying the source of heavy metals in agricultural soils in a coal gangue stacking area: Insights from isotope fingerprints and receptor models. Sci. Total Environ. 2023, 863, 160882. [Google Scholar]
- Liu, X.; Jin, Z.; Qiang, L.; Weidong, L. Preparation of technosol based on coal gangue and its impact on plant growth in coal mining area. J. Clean. Prod. 2024, 467, 142998. [Google Scholar] [CrossRef]
- Bing, S.; Hui, W. The Influence of CO2 Curing on the Properties of Coal Gangue Non-Fired Blocks. Buildings 2024, 14, 1950. [Google Scholar] [CrossRef]
- Zhang, Y.; Gui, H.R.; Huang, Y.Z.; Yu, H.; Li, J.; Wang, M.C.; Fang, H.X.; Jiang, Y.; Wang, C.L.; Chen, C. Characteristics of Soil Heavy Metal Contents and its Source Analysis in Affected Areas of Luning Coal Mine in Huaibei Coalfield. Pol. J. Environ. Stud. 2021, 30, 1465–1476. [Google Scholar] [CrossRef]
- Li, J.T.; Liu, L.S.; Kang, X.J.; Li, K.; Zhang, S.; Liu, Q.F. Enrichment of lithium in the claystone coal gangue from the Malan mine, Xishan Coalfield, Shanxi Province, Northern China. Geochemistry 2023, 83, 125972. [Google Scholar] [CrossRef]
- Liu, L.H.; Liu, Q.F.; Li, Y.K.; Cao, H.Y.; Kang, X.J. Occurrence of Iron in the Minerals of Carboniferous Coal Gangue of the Pingshuo Open-pit Mine, North China. Clays Clay Miner. 2022, 70, 695–711. [Google Scholar] [CrossRef]
- Huang, Y.L.; Wang, W.F.; Bian, Z.F. Prospects of resource utilization and disposal of coal-based solid wastes in Xinjiang. Coal Sci. Technol. 2021, 49, 319–330. [Google Scholar]
- Liu, Y.D.; Wang, D.P. Research and application of pillar support form and new pump-filled pillar in coal mine roadways. Chin. J. Rock. Mech. Eng. 2024, 43, 2466–2484. [Google Scholar]
- Buyondo, A.K.; Kasedde, H.; Kirabira, J.B. A comprehensive review on kaolin as pigment for paint and coating: Recent trends of chemical-based paints, their environmental impacts and regulation. Case Stud. Chem. Environ. Eng. 2022, 6, 100244. [Google Scholar] [CrossRef]
- Nguyễn, T.T.; Bui, H.B. Characterization and thermal behavior of some types of kaolin of different origin from Northern Vietnam. Min. Sci. Technol. 2024, 9, 30–40. [Google Scholar]
- Chen, Z.H.; Huang, X.Y.; He, H.; Tang, J.L.; Tao, X.X.; Huang, H.Z.; Haider, R.; Ali, M.I.; Jamal, A.; Huang, Z.X. Bioleaching Coal Gangue with a Mixed Culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Minerals 2021, 11, 1043. [Google Scholar] [CrossRef]
- Liu, L.H.; Liu, Q.F.; Zhang, K.N.; Zhang, S.; Li, K.; Li, J.T.; Peng, G.Y. Thermal decomposition and oxidation of pyrite with different morphologies in the coal gangue of North China. J. Therm. Anal. Calorim. 2022, 148, 2023–2038. [Google Scholar]
- Ma, D.; Lin, C.; Zhang, F.; Duan, Y.G.; Feng, D.C. Accelerated oxidation behaviors and thermodynamic characteristics of unburned gangue for road applications. Fuel 2025, 387, 134371. [Google Scholar]
- Barbu, C.A.; Tomuș, N.; Radu, A.D.; Zlăgnean, M.; Popescu, I.-C. Gravity Separation: Highly Effective Tool for Gold-Bearing Slag’s Recycling. J. Sustain. Metall. 2021, 7, 1852–1861. [Google Scholar]
- Xu, P.Y.; Fang, H.; Chen, Z.; Liu, B.; Jiang, Z.K.; Guo, X.Y.; Xu, K.H. Chromite removal process from low-grade laterite nickel ore by classification and gravity-magnetic combined separation technology. J. Cent. South. Univ. Sci. Technol. 2020, 51, 567–578. [Google Scholar]
- Sajima, T.H.; Suyanti; Sudaryadi. Separation the zircon mineral from tailing Tin mining using shaking table. J. Phys. Conf. Ser. 2020, 1436, 012127. [Google Scholar] [CrossRef]
- Akbari, M.; Shafaei Tonkaboni, S.Z.; Khanchi, A.R. Thorium Recovery from Choghart Mining Waste by Beneficiation Processes. JOM 2023, 75, 1045–1058. [Google Scholar] [CrossRef]
- Ali, S.; Nawaz, F.; Iqbal, Y. Phase, Microstructural Characterization and Beneficiation of Iron Ore by Shaking Table. Pak. J. Sci. Ind. Res. 2021, 64, 19–25. [Google Scholar] [CrossRef]
- Kaseba, C.N.Y.L.; Nheta, W. Application of Response Surface Methodology on the Optimization of Chromite Recovery from the South African Middle Group Chromite Seams. J. Sustain. Metall. 2024, 10, 929–949. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Quast, K.; Zanin, M.; Addai-Mensah, J.; Skinner, W. A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Sci. Total Environ. 2019, 344, 897–913. [Google Scholar] [CrossRef]
- Öztürk, F.D.; Temel, H.A. Beneficiation of Konya-Beyşehir Chromite for Producing Concentrates Suitable for Industry. JOM 2016, 68, 2449–2454. [Google Scholar] [CrossRef]
- Cheng, H.; Xu, J.; Wang, S.J.; Lv, Z.H.; Wei, F.; Zhao, D.L.; Wu, D.Y. Mineralogical factors affecting the separation behavior of Ta-Nb-bearing minerals in the gravity field: Mineral grain size, liberation, and association relationship. Physicochem. Probl. Miner. Process 2023, 59, 174504. [Google Scholar] [CrossRef]
- GB/T 27974-2011; Methods for Chemical Analysis of Fly Ash and Coal Gangue as Buliding Material. Standardization Administration of China: Beijing, China, 2011; pp. 1–21.
- Nasution, S.H.; Irvani, I.; Rosita, A. Optimalisasi Shaking Table Dalam Pencucian Bijih Timah Low Grade Di PPBT Pemali Kabupaten Bangka PT Timah Tbk. Mineral 2019, 4, 37–43. [Google Scholar] [CrossRef]
- Panjaitan, K.D.; Pitulima, J.; Andini, D.E. Kajian Teknis Pengolahan SHP menggunakan Shaking Table untuk Mengoptimalkan Kadar dan Recovery Sn di TB Batu Besi PT Timah Tbk. Mineral 2023, 8, 31–38. [Google Scholar] [CrossRef]
- Win, N.Z.H.; Numprasanthai, A.; Laowattanabandit, P. The Effectiveness of Physical Separation Process for the Alluvial Tin (Heinda) Ore, Myanmar. MATTER Int. J. Sci. Technol. 2020, 6, 25–42. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Selim, A.Q.; Hagrass, A.A. Gravity Separation of Silica Sands for Value Addition. Part. Sci. Technol. 2013, 31, 590–595. [Google Scholar] [CrossRef]
- Teniola, O.S.; Adeleke, A.A.; Ibitoye, S.A.; Shitu, M.D. Effectiveness of Gravity Separation of Low Grade Nigerian Gold Ore Using Shaking Table. Int. J. Nonferrous Metall. 2022, 10, 15–22. [Google Scholar] [CrossRef]
- Ma, S.Y.; Shi, M.; Zhang, C.; Cao, Q.Y. Mineralogical Characteristics and Genetic Types of Pyrite with Different Occurrence: Constraints from Spectroscopy, Geochemistry and δ34S Stable Isotopes. Minerals 2024, 14, 52. [Google Scholar] [CrossRef]
- Gao, S.; Huang, F.; Gu, X.P.; Li, X.Y.; Meng, L.; Liu, R.; Sun, L.; Gao, W.Y.; Yu, H.T. Growth Pattern and Its Indication of Spheroidal Nano-Micro Crystal Aggregates of Pyrite in the Baiyunpu Pb-Zn Polymetallic Deposit, Central Hunan. Acta Geol. Sin. 2014, 88, 1770–1783. [Google Scholar] [CrossRef]
- Sun, F.S.; Dai, S.Q.; Wang, L.; Xing, Y.W.; Gui, X.H. Pre-enrichment experiment of high gradient magnetic separation based on lithium and gallium elements in coal gangue. Clean. Coal Technol. 2024, 30, 154–162. [Google Scholar]
- Bai, Y.Q.; Zhao, P.F.; Guo, M.Y.; Yan, G.H.; Zhou, C.Y.; Sun, Z.S.; Gao, T.Y.; Zhang, B. Apparent viscosity of high-density fluidized bed and synergistic effect of density and apparent viscosity on particle separation. Energy Sources Part A 2023, 45, 4822–4838. [Google Scholar] [CrossRef]
- Zeng, G.S.; Zhu, Y.G.; Chen, W. A Brief Review of Micro-Particle Slurry Rheological Behavior in Grinding and Flotation for Enhancing Fine Mineral Processing Efficiency. Minerals 2023, 13, 792. [Google Scholar] [CrossRef]
- Ye, L.P.; Penaloza-Giraldo, J.A.; Manning, A.J.; Holyoke, J.; Hsu, T.-J. Biophysical flocculation reduces variability of cohesive sediment settling velocity. Commun. Earth Environ. 2023, 4, 138. [Google Scholar] [CrossRef]
- Huber, C.; Parmentier, E.M.; Florez, D. Particle Sedimentation in a Fluid at Low Reynolds Number: A Generalization of Hindered Settling Described by a Two-Phase Continuum Model. Geochem. Geophys. Geosystems 2025, 26, e2024GC011820. [Google Scholar] [CrossRef]
- Fan, Y.; Qin, F.H.; Luo, X.S.; Liu, L.; Gui, H.Q.; Liu, J.G. Heterogeneous condensation on insoluble spherical particles: Modeling and parametric study. Chem. Eng. Sci. 2013, 102, 387–396. [Google Scholar] [CrossRef]
- Xu, Z.H.; Li, Z.Q.; Wang, Y.D.; Wu, Y.K.; Li, K.X.; Shi, H.Y. Numerical simulation of pneumatic conveying of wet particles based on CFD-DEM. Chin. Powder Sci. Technol. 2024, 171, 140–152. [Google Scholar]
SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | K2O | TiO2 | MgO | Na2O | P2O5 | ZrO2 | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|
56.89 | 31.42 | 3.89 | 2.72 | 1.78 | 1.31 | 1.22 | 0.34 | 0.12 | 0.09 | 0.02 | 99.80 |
dmax/μm | RRSB Distribution | Fuller Distribution | Lognormal Distribution | Normal Distribution |
---|---|---|---|---|
40 | 0.95862 | 0.95211 | 0.86564 | 0.95402 |
63 | 0.95948 | 0.95114 | 0.85848 | 0.94355 |
125 | 0.96817 | 0.95780 | 0.87987 | 0.93530 |
250 | 0.97251 | 0.95279 | 0.88839 | 0.93459 |
500 | 0.98536 | 0.97931 | 0.97657 | 0.94817 |
1000 | 0.99604 | 0.97578 | 0.98436 | 0.89785 |
Stroke/mm | Separated Product | Yield (%) | Content (%) | Difference Content Between Concentrate and Tailings (%) | ||
---|---|---|---|---|---|---|
SO3 | Fe2O3 | SO3 | Fe2O3 | |||
10 | Concentrate | 5.1 | 4.68 | 8.16 | 3.11 | 4.55 |
Middlings | 15.7 | 1.90 | 3.90 | |||
Tailings | 79.2 | 1.57 | 3.61 | |||
12 | Concentrate | 7.7 | 4.63 | 8.03 | 3.29 | 4.74 |
Middlings | 17.8 | 2.41 | 4.59 | |||
Tailings | 74.5 | 1.34 | 3.29 | |||
14 | Concentrate | 9.4 | 3.70 | 6.36 | 2.30 | 2.93 |
Middlings | 18.1 | 2.29 | 4.44 | |||
Tailings | 72.5 | 1.40 | 3.43 | |||
16 | Concentrate | 10.6 | 2.85 | 5.17 | 1.32 | 1.58 |
Middlings | 18.5 | 2.13 | 4.29 | |||
Tailings | 70.9 | 1.53 | 3.59 |
Stroke Frequency/ (times/min) | Separated Product | Yield (%) | Content (%) | Difference Content Between Concentrate and Tailings (%) | ||
---|---|---|---|---|---|---|
SO3 | Fe2O3 | SO3 | Fe2O3 | |||
260 | Concentrate | 10.3 | 2.85 | 5.24 | 1.30 | 1.65 |
Middlings | 19.9 | 2.03 | 4.26 | |||
Tailings | 69.8 | 1.55 | 3.59 | |||
290 | Concentrate | 7.7 | 4.63 | 8.03 | 3.29 | 4.74 |
Middlings | 17.8 | 2.41 | 4.59 | |||
Tailings | 74.5 | 1.34 | 3.29 | |||
320 | Concentrate | 6.1 | 6.24 | 11.34 | 5.01 | 8.24 |
Middlings | 12.4 | 3.21 | 5.42 | |||
Tailings | 81.5 | 1.23 | 3.10 | |||
350 | Concentrate | 10.2 | 3.41 | 5.54 | 1.95 | 2.03 |
Middlings | 18.1 | 2.15 | 4.49 | |||
Tailings | 71.7 | 1.46 | 3.51 |
Sample | Maximum Particle Size dmax/μm | Separated Product | Yield (%) | Content (%) | Difference Content Between Concentrate and Tailings (%) | ||
---|---|---|---|---|---|---|---|
SO3 | Fe2O3 | SO3 | Fe2O3 | ||||
F1 | 1000 | Concentrate | 30.9 | 1.91 | 4.08 | 0.29 | 0.40 |
Middlings | 46.9 | 1.78 | 3.86 | ||||
Tailings | 22.2 | 1.62 | 3.68 | ||||
F2 | 500 | Concentrate | 19.5 | 2.73 | 5.47 | 1.36 | 2.22 |
Middlings | 31.4 | 1.84 | 3.91 | ||||
Tailings | 49.1 | 1.37 | 3.25 | ||||
F3 | 250 | Concentrate | 7.9 | 6.43 | 12.03 | 5.29 | 9.14 |
Middlings | 19.8 | 2.27 | 4.31 | ||||
Tailings | 72.3 | 1.14 | 2.89 | ||||
F4 | 125 | Concentrate | 7.1 | 6.20 | 10.93 | 4.85 | 7.71 |
Middlings | 12.8 | 2.01 | 4.21 | ||||
Tailings | 80.1 | 1.35 | 3.22 | ||||
F5 | 63 | Concentrate | 3.7 | 5.90 | 9.06 | 4.32 | 5.42 |
Middlings | 9.9 | 1.99 | 4.19 | ||||
Tailings | 86.4 | 1.58 | 3.64 | ||||
F6 | 40 | Concentrate | 2.8 | 5.04 | 8.02 | 3.38 | 4.28 |
Middlings | 6.4 | 2.09 | 4.28 | ||||
Tailings | 90.8 | 1.66 | 3.74 |
Sample | Characteristic Particle Size de/μm | Separated Product | Yield (%) | Content (%) | Difference Content Between Concentrate and Tailings (%) | ||
---|---|---|---|---|---|---|---|
SO3 | Fe2O3 | SO3 | Fe2O3 | ||||
R1 | 340 | Concentrate | 29.0 | 2.65 | 5.03 | 1.27 | 1.68 |
Middlings | 45.7 | 1.45 | 3.46 | ||||
Tailings | 25.3 | 1.38 | 3.35 | ||||
R2 | 150 | Concentrate | 16.4 | 3.69 | 6.64 | 2.44 | 3.50 |
Middlings | 30.0 | 1.67 | 3.72 | ||||
Tailings | 53.6 | 1.25 | 3.14 | ||||
R3 | 40 | Concentrate | 7.2 | 7.45 | 14.09 | 6.40 | 11.40 |
Middlings | 19.1 | 2.45 | 4.65 | ||||
Tailings | 73.7 | 1.05 | 2.69 | ||||
R4 | 30 | Concentrate | 6.3 | 6.57 | 12.34 | 5.36 | 9.33 |
Middlings | 11.6 | 3.25 | 5.54 | ||||
Tailings | 82.1 | 1.21 | 3.01 | ||||
R5 | 13 | Concentrate | 3.0 | 5.93 | 10.50 | 4.53 | 7.16 |
Middlings | 9.7 | 3.93 | 6.76 | ||||
Tailings | 87.3 | 1.40 | 3.34 | ||||
R6 | 9 | Concentrate | 2.1 | 5.38 | 8.74 | 3.83 | 5.14 |
Middlings | 5.5 | 4.20 | 6.87 | ||||
Tailings | 92.4 | 1.55 | 3.60 |
Characteristic Particle Size de/μm | Separated Product | Yield (%) | Content (%) | Content Difference Between Concentrate and Tailings (%) | ||
---|---|---|---|---|---|---|
SO3 | Fe2O3 | SO3 | Fe2O3 | |||
42 | Concentrate | 7.8 | 7.40 | 13.90 | 6.28 | 11.14 |
Middlings | 19.8 | 1.96 | 4.06 | |||
Tailings | 72.4 | 1.12 | 2.76 | |||
40 | Concentrate | 7.2 | 7.45 | 14.09 | 6.40 | 11.40 |
Middlings | 19.1 | 2.45 | 4.65 | |||
Tailings | 73.7 | 1.05 | 2.69 | |||
37 | Concentrate | 6.9 | 7.50 | 14.16 | 6.35 | 11.31 |
Middlings | 18.7 | 2.17 | 4.23 | |||
Tailings | 74.4 | 1.15 | 2.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Ji, W.; Li, H.; Fan, X.; Wang, Y. Study on the Effect of Coal Gangue Particle Size Distribution for the Preparation of Kaolin by Shaking Table Separation. Coatings 2025, 15, 430. https://doi.org/10.3390/coatings15040430
Hou X, Ji W, Li H, Fan X, Wang Y. Study on the Effect of Coal Gangue Particle Size Distribution for the Preparation of Kaolin by Shaking Table Separation. Coatings. 2025; 15(4):430. https://doi.org/10.3390/coatings15040430
Chicago/Turabian StyleHou, Xinkai, Wenjuan Ji, Hao Li, Xiaoqi Fan, and Ying Wang. 2025. "Study on the Effect of Coal Gangue Particle Size Distribution for the Preparation of Kaolin by Shaking Table Separation" Coatings 15, no. 4: 430. https://doi.org/10.3390/coatings15040430
APA StyleHou, X., Ji, W., Li, H., Fan, X., & Wang, Y. (2025). Study on the Effect of Coal Gangue Particle Size Distribution for the Preparation of Kaolin by Shaking Table Separation. Coatings, 15(4), 430. https://doi.org/10.3390/coatings15040430