Investigations on the Energy Storage Performance of Cu Modified BaTiO3 Ceramics
Abstract
1. Introduction
2. Experimental Methods
2.1. Fabrication
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, J.; Lv, F.; Hong, Z.; Liu, B.; Wu, Y.; Huang, Y. Ultrahigh piezoelectric response obtained by artificially generating a large internal bias field in BiFeO3–BaTiO3 lead-free ceramics. Adv. Funct. Mater. 2024, 34, 2313879. [Google Scholar] [CrossRef]
- Yan, F.; Qian, J.; Lin, J.; Ge, G.; Shi, C.; Zhai, J. Ultrahigh energy storage density and efficiency of lead-free dielectrics with sandwich structure. Small 2024, 20, 2306803. [Google Scholar] [CrossRef]
- Guo, B.; Jin, F.; Li, L.; Pan, Z.Z.; Xu, X.W.; Wang, H. Design strategies of high-performance lead-free electro-ceramics for energy storage applications. Rare Met. 2024, 43, 853–878. [Google Scholar] [CrossRef]
- Jain, A.; Wang, Y.G.; Shi, L.N. Recent developments in BaTiO3 based lead-free materials for energy storage applications. J. Alloys Compd. 2022, 928, 167066–167099. [Google Scholar] [CrossRef]
- Peng, B.; Tang, S.; Lu, L.; Zhang, Q.; Huang, H.; Bai, G.; Miao, L.; Zou, B.; Liu, L.; Sun, W.; et al. Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film. Nano Energy 2020, 77, 105132. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Wang, H.X.; Wu, L.W.; Chen, L.L.; Cai, Z.M.; Li, L.T.; Wang, X.H. High performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 2019, 9, 1803048. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Yang, T. Excellent energy density efficiency in Ba Sr codoped, (Pb,La)(Zr,Sn)O3 antiferroelectric ceramics. J. Phys. Chem. Solid. 2023, 172, 111046. [Google Scholar] [CrossRef]
- Yang, S.Y.; Zeng, D.F.; Dong, Q.P.; Pan, Y.; Nong, P.; Xu, M.Z.; Chen, X.L.; Li, X.; Zhou, H.F. Enhancement of energy storage performances in BaTiO3-based ceramics via introducing, Bi(Mg2/3Sb1/3)O3. J. Energy Storage 2024, 78, 110102. [Google Scholar] [CrossRef]
- Qi, H.; Xie, A.; Zuo, R. Local structure engineered lead-free ferroic dielectrics for superior energy-storage capacitors: A review. Energy Storage Mater. 2022, 45, 541–567. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Li, Y.Z.; Pan, J.C.; Xie, B.Y.; Li, K.X.; Katie, L.M.; Annette, K.K.; David, A. Hall, Effects of trace Nb dopant on core-shell microstructure and ferroelectric domain switching in BiFeO3-BaTiO3 ceramics. Acta Mater. 2025, 289, 120890. [Google Scholar] [CrossRef]
- Marunouchi, K.; Gong, L.Z.; Ohta, H.; Tsukasa, K. High-concentration doping effects of aliovalent Al and Ga on ferroelectric properties of BaTiO3 Films. Thin Solid Films 2024, 796, 140339. [Google Scholar] [CrossRef]
- Wang, H.Y.; Cao, M.H.; Tao, C.; Hao, H.; Yao, Z.H.; Liu, H.X. Tuning the microstructure of BaTiO3@FeO core-shell nanoparticles with low temperatures sintering dense nanocrystalline ceramics for high energy storage capability and stability. J Alloy Compd. 2021, 864, 158644. [Google Scholar] [CrossRef]
- Yan, G.W.; Liu, Q.Q.; Fang, B.J.; Chen, Z.H. Correlation between phase structure polarization of Mg doped (Ba0.98Li0.02)TiO3 energy storage ceramics. J. Mater. Sci. Mater. Electron. 2022, 33, 20981–20991. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, A.; Zhang, G.R.; Zheng, Y.Q.; Zheng, A.J.; Luo, G.Q.; Tu, R.; Sun, Y.; Zhang, J.; Shen, Q. Optimization of energy storage properties in lead-free barium titanate-based ceramics via B-site defect dipole engineering. ACS Sustain. Chem. Eng. 2022, 10, 2930–2937. [Google Scholar] [CrossRef]
- Liu, W.F.; Gao, J.H.; Zhao, Y.; Li, S.T. Significant enhancement of energy storage properties of BaTiO3-based ceramics by hybrid-doping. J. Alloy Compd. 2020, 843, 155938. [Google Scholar] [CrossRef]
- Gao, J.H.; Liu, W.F.; Zhang, L.; Kong, F.Y.; Zhao, Y.; Li, S.T. Enhanced dielectric and ferroelectric properties of the hybrid-doped BaTiO3 ceramics by the semi-solution method. Ceram. Int. 2021, 47, 15661–15667. [Google Scholar] [CrossRef]
- Li, Z.W.; Chen, Z.H.; Xu, J.J. Investigations on structure energy storage properties of, Ba(Ti,Ca)O3 ceramics with Ca ion doping in Bsite. J. Electron. Mater. 2022, 11664, 09684. [Google Scholar]
- Jain, A.; Wang, Y.G.; Wang, N.; Wang, F.L. Critical role of CuO doping on energy storage performance and electromechanical properties of Ba0.8Sr0.1Ca0.1Ti0.9Zr0.1O3 ceramics. Ceram. Int. 2020, 46, 18800–18812. [Google Scholar] [CrossRef]
- Liu, J.; Dai, J.; Shang, F.R.; Bai, Y.H.; Zhao, X.; Liu, X.; Du, H.L.; Ma, C.Y. Effect of entropy on dielectric and ferroelectric properties of BaTiO3-based ceramics for energy-storage applications. Ceram. Int. 2025, 51, 28537–28545. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, H.; Zhang, L.; Chen, C.; Luo, Z.P.; Liu, Z.; Yao, Z.H.; Cao, M.H. Structure, electrical and dielectric properties of Ca substituted BaTiO3 ceramics. Ceram. Int. 2018, 44, 11109–11115. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, X.Y.; Guo, Q.H.; Su, C.; Deng, G.P.; Liu, H.Z.; Yao, Z.H.; Zhang, S.J.; Liu, H.X. Formation and evolution of oxygen vacancy layer in BaTiO3 dielectric ceramics under thermal and electric field stimuli. Acta Mater. 2025, 299, 121450. [Google Scholar] [CrossRef]
- Hu, D.; Pan, Z.; Zhang, X. Greatly enhanced discharge energy density efficiency of novel relaxation ferroelectric BNT-BKT-based ceramics. J. Mater. Chem. 2020, 8, 591–601. [Google Scholar] [CrossRef]
- Sohrabi, B.; Heidary, D.; Randall, C.A. Analysis of the degradation of BaTiO3 resistivity due to hydrogen ion incorporation: Impedance spectroscopy and diffusion analysis. Acta Mater. 2015, 96, 344–351. [Google Scholar] [CrossRef]
- Li, Z.W.; Jiang, T.Z.; Chen, Z.H.; Xu, J.J. Improved energy storage performance of Ba(Ti,Ca)O3 ceramics through tailoring phase structure ferroelectric polarization. J. Phys. D Appl. Phys. 2023, 56, 185502. [Google Scholar] [CrossRef]
- Raddaoui, Z.; Elkossi, S.; Dhahri, J.; Abdelmoula, N.; Taibi, K. Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic. RSC Adv. 2019, 9, 2412–2425. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Wang, C.Y.; Zhao, H.Y.; Cao, W.J.; Huang, X.C.; Wang, C.C. Enhanced energy storage performance of NaNbO3-based ceramics via band and domain engineering. Ceram. Int. 2023, 49, 40326–40335. [Google Scholar] [CrossRef]
- Guo, S.Q.; Tian, Y.; Ma, Q.Z.; Xu, Y.H.; Yang, D.; She, L.N.; Sun, Z.X.; Wu, Y.T.; Ge, W.Y.; Jin, L.; et al. Synergistic enhancement of antiferroelectric energy storage in AgNbO3 ceramics. J. Eur. Ceram. Soc. 2025, 45, 117701. [Google Scholar] [CrossRef]
- Jo, H.R.; Lynch, C.S. A high energy density relaxor antiferroelectric pulsed capacitor dielectric. J. Appl. Phys. 2016, 119, 024104. [Google Scholar] [CrossRef]











| Sample | Lattice Parameters (Å) | Volume (Å3) | T Phase (%) | C Phase (%) | R Factors (%) | ||||
|---|---|---|---|---|---|---|---|---|---|
| x | a | b | c | Rwp | Rp | χ2 | |||
| BTC0 | 3.9985 | 3.9985 | 4.0039 | 64.34 | 91.62 | 8.38 | 7.67 | 5.45 | 6.53 |
| BTC1 | 3.9991 | 3.9991 | 4.0064 | 64.42 | 74.54 | 25.46 | 6.36 | 6.21 | 5.16 |
| BTC2 | 4.0014 | 4.0014 | 4.0085 | 64.51 | 60.48 | 39.52 | 5.73 | 5.77 | 7.12 |
| BTC3 | 4.0101 | 4.0101 | 4.0101 | 64.59 | 36.16 | 63.84 | 4.93 | 6.67 | 5.23 |
| BTC4 | 4.0124 | 4.0124 | 4.0124 | 64.65 | 24.45 | 75.55 | 7.21 | 6.95 | 7.12 |
| BTC5 | 4.0136 | 4.0136 | 4.0136 | 64.69 | 13.57 | 86.43 | 6.17 | 7.16 | 6.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ding, X.; Wang, J.; Zhu, D.; Ji, G.; Li, S.; Jia, G. Investigations on the Energy Storage Performance of Cu Modified BaTiO3 Ceramics. Coatings 2025, 15, 1422. https://doi.org/10.3390/coatings15121422
Li Z, Ding X, Wang J, Zhu D, Ji G, Li S, Jia G. Investigations on the Energy Storage Performance of Cu Modified BaTiO3 Ceramics. Coatings. 2025; 15(12):1422. https://doi.org/10.3390/coatings15121422
Chicago/Turabian StyleLi, Zhiwei, Xuqiang Ding, Junlong Wang, Dandan Zhu, Guang Ji, Shunming Li, and Guodong Jia. 2025. "Investigations on the Energy Storage Performance of Cu Modified BaTiO3 Ceramics" Coatings 15, no. 12: 1422. https://doi.org/10.3390/coatings15121422
APA StyleLi, Z., Ding, X., Wang, J., Zhu, D., Ji, G., Li, S., & Jia, G. (2025). Investigations on the Energy Storage Performance of Cu Modified BaTiO3 Ceramics. Coatings, 15(12), 1422. https://doi.org/10.3390/coatings15121422
