Multifunctional MXene/GO/rGO-Textile Flexible Sensor with Outstanding Electrothermal and Strain-Sensing Performance for Wearable Applications
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instruments
2.3. Synthesis of MXene and GO
2.4. Fabrication of Flexible Sensor
2.5. Characterization and Measurements
3. Results
3.1. Preparation and MXene/GO/rGO Laminated Flexible Sensor
3.2. Conductive Mechanism of MXene/GO/rGO Electronic Textile
3.3. Durability and Air Permeability
3.4. Electrothermal Performance and Morse Code–Based Communication
3.5. Strain-Sensing Performance
3.6. Application Demonstration: Morse Code Emergency Communication
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heo, J.S.; Eom, J.; Kim, Y.H.; Park, S.K. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small 2018, 14, 1703034. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Chen, X.; Chen, X.; Peng, S.; Song, M. Advancements in MXene Composite Materials for Wearable Sensors: A Review. Sensors 2024, 24, 4092. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, F.; Lin, Y.; Wang, J.; Zhang, C.; Cheng, H.; Chen, H. MXene-based flexible sensors for wearable applications. Soft Sci. 2025, 5, 33. [Google Scholar] [CrossRef]
- Horita, Y.; Kuromatsu, S.; Watanabe, T.; Suga, R.; Koh, S. Polydopamine-assisted dip-and-dry fabrication of highly conductive cotton fabrics using single-wall carbon nanotubes inks for flexible devices. Cellulose 2023, 30, 1971–1980. [Google Scholar] [CrossRef]
- Xue, P.; Tao, X.; Tsang, H. In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Appl. Surf. Sci. 2007, 253, 3387–3392. [Google Scholar] [CrossRef]
- Zhou, N.; Jiang, B.; He, X.; Li, Y.; Ma, Z.; Zhang, H.; Zhang, M. A superstretchable and ultrastable liquid metal–elastomer wire for soft electronic devices. ACS Appl. Mater. Interfaces 2021, 13, 19254–19262. [Google Scholar] [CrossRef]
- Luo, M.; Chen, H.; Xia, M.; Wang, D.; Li, M. Preparation of elastic conductive composite fiber and its strain and temperature sensing properties. J. Text. Res. 2024, 45, 9–15. [Google Scholar]
- Molina, J. Graphene-based fabrics and their applications: A review. RSC Adv. 2016, 6, 68261–68291. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581. [Google Scholar] [CrossRef]
- Tian, Y.; Hou, P.; Zhang, H.; Xie, Y.; Chen, G.; Li, Q.; Du, F.; Vojvodic, A.; Wu, J.; Meng, X. Theoretical insights on potential-dependent oxidation behaviors and antioxidant strategies of MXenes. Nat. Commun. 2024, 15, 10099. [Google Scholar] [CrossRef]
- Soomro, R.A.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the oxidation stability of MXenes. Nano-Micro Lett. 2023, 15, 108. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Thakur, A.; Zahmatkeshsaredorahi, A.; Fang, Z.; Rad, V.; Shamsabadi, A.A.; Pereyra, C.; Soroush, M.; Rappe, A.M.; Xu, X.G.; et al. Stabilizing Ti3C2Tx MXene flakes in air by removing confined water. Proc. Natl. Acad. Sci. USA 2024, 121, e2400084121. [Google Scholar] [CrossRef] [PubMed]
- Eom, W.; Shin, H.; Jeong, W.; Ambade, R.B.; Lee, H.; Han, T.H. Surface nitrided MXene sheets with outstanding electroconductivity and oxidation stability. Mater. Horiz. 2023, 10, 4892–4902. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, L.; Cai, Y.; Shen, D.; Gou, P.; Wang, M.; Hu, G.; Xie, F. Anti-oxidation polyimide-based hybrid foams assembled with bilayer coatings for efficient electromagnetic interference shielding. Chem. Eng. J. 2023, 451, 138808. [Google Scholar] [CrossRef]
- Zeng, Q.; Wang, B.; Lai, X.; Li, H.; Chen, Z.; Zeng, X.; Zhang, L. A multifunctional flame-retardant TA-MXene based nanocoating for cotton fabric. Prog. Org. Coat. 2024, 189, 108333. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Fang, L.; Wang, Z.; Wu, F.; Liu, G.; Wang, Q.; Nian, H. Surface-Modification Strategy to Produce Highly Anticorrosive Ti3C2Tx MXene-Based Polymer Composite Coatings: A Mini-Review. Materials 2025, 18, 653. [Google Scholar] [CrossRef]
- Mozafari, M.; Soroush, M. Surface functionalization of MXenes. Mater. Adv. 2021, 2, 7277–7307. [Google Scholar] [CrossRef]
- Liu, Y.; Fei, B.; Xin, J.H. Functionalization of fabrics with Graphene-based coatings: Mechanisms, approaches, and functions. Coatings 2023, 13, 1580. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Jin, C.; Bai, Z. MXene-based textile sensors for wearable applications. ACS Sens. 2022, 7, 929–950. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, S.Y.; Zhang, Y.; Park, S.J.; Gu, J. Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 2023, 10, 2303104. [Google Scholar] [CrossRef] [PubMed]
- Hummers Jr, W.S.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Hong, X.; Sun, W.; Zhang, S.; Tang, Z.; Zhou, M.; Guo, S.; Guo, X.; Zhao, W.; Wang, X.; Chen, H. Washable and multifunctional electronic textiles via in situ lamination for personal health care. Adv. Fiber Mater. 2024, 6, 458–472. [Google Scholar] [CrossRef]
- Olivieri, F.; Rollo, G.; De Falco, F.; Avolio, R.; Bonadies, I.; Castaldo, R.; Cocca, M.; Errico, M.E.; Lavorgna, M.; Gentile, G. Reduced graphene oxide/polyurethane coatings for wash-durable wearable piezoresistive sensors. Cellulose 2023, 30, 2667–2686. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Zhang, D.; Guo, Z. Stable and durable conductive superhydrophobic coatings prepared by double-layer spray coating method. Nanomaterials 2021, 11, 1506. [Google Scholar] [CrossRef]
- Lipatov, A.; Alhabeb, M.; Lukatskaya, M.R.; Boson, A.; Gogotsi, Y.; Sinitskii, A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2016, 2, 1600255. [Google Scholar] [CrossRef]
- Abay, Z.M.; Wei, Y.; Tang, Z.; Liu, Y.; Chen, K.; Li, H.; Wang, Q.; Yuan, J.; Hu, P.; Lu, D.; et al. Versatile MXene/(GO-AgNWs) electronic textile enabled by mixed-scale assembly strategy. Nano Energy 2025, 139, 110963. [Google Scholar] [CrossRef]
- Rufang, Y.; Xinghua, H.; Chengyan, Z.; Zimin, J.; Junmin, W. Electrical heating properties of fabrics coated by reduced graphene oxide. J. Text. Res. 2021, 42, 126–131. [Google Scholar]
- Xu, J.; Li, Y.; Yan, F. Constructed MXene matrix composites as sensing material and applications thereof: A review. Anal. Chim. Acta 2024, 1288, 342027. [Google Scholar] [CrossRef]
- Topuz, M.; Karatas, E.; Ruzgar, D.; Akinay, Y.; Cetin, T. Ti3C2Tx MXene/halloysite nanotube functionalized films for antibacterial applications. J. Biomater. Sci. Polym. Ed. 2025, 1–15. [Google Scholar] [CrossRef]
- Xia, D.; Li, H.; Huang, P. Understanding the Joule-heating behaviours of electrically-heatable carbon-nanotube aerogels. Nanoscale Adv. 2021, 3, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Zhang, T.-Y.; Lu, Q.; Wang, D.-Y.; Yang, Y.; Wu, X.-M.; Ren, T.-L. High-performance graphene-based flexible heater for wearable applications. RSC Adv. 2017, 7, 27001–27006. [Google Scholar] [CrossRef]
- Wang, Q.W.; Zhang, H.B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z.Z. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 2019, 29, 1806819. [Google Scholar] [CrossRef]
- Pan, Y.; Li, H.; Du, Z. Electrical/optical dual-energy-driven MXene fabric-based heater with fast response actuating and human strain sensing. J. Mater. Sci. Technol. 2024, 197, 57–64. [Google Scholar] [CrossRef]
- Zheng, X.; Shen, J.; Hu, Q.; Nie, W.; Wang, Z.; Zou, L.; Li, C. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale 2021, 13, 1832–1841. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, W.; Luan, S.; Wei, J.; Yang, Y.; Miao, J. Nanomaterials for smart wearable fibers and textiles: A critical review. iScience 2025, 28, 113126. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, R.; Zhang, H.; Huang, J.; Hao, R.; Wei, Y.; Liu, Y.; Liao, X.; Pi, B.; Hong, X. Multifunctional MXene/GO/rGO-Textile Flexible Sensor with Outstanding Electrothermal and Strain-Sensing Performance for Wearable Applications. Coatings 2025, 15, 1381. https://doi.org/10.3390/coatings15121381
Zeng R, Zhang H, Huang J, Hao R, Wei Y, Liu Y, Liao X, Pi B, Hong X. Multifunctional MXene/GO/rGO-Textile Flexible Sensor with Outstanding Electrothermal and Strain-Sensing Performance for Wearable Applications. Coatings. 2025; 15(12):1381. https://doi.org/10.3390/coatings15121381
Chicago/Turabian StyleZeng, Rongjie, Han Zhang, Jiaqing Huang, Rui Hao, Yuxin Wei, Yige Liu, Xinyue Liao, Birong Pi, and Xinghua Hong. 2025. "Multifunctional MXene/GO/rGO-Textile Flexible Sensor with Outstanding Electrothermal and Strain-Sensing Performance for Wearable Applications" Coatings 15, no. 12: 1381. https://doi.org/10.3390/coatings15121381
APA StyleZeng, R., Zhang, H., Huang, J., Hao, R., Wei, Y., Liu, Y., Liao, X., Pi, B., & Hong, X. (2025). Multifunctional MXene/GO/rGO-Textile Flexible Sensor with Outstanding Electrothermal and Strain-Sensing Performance for Wearable Applications. Coatings, 15(12), 1381. https://doi.org/10.3390/coatings15121381

