Fast Joining of the 40Cr/WC-8Co Combination with Ag28Cu Interlaer Through the Spark Plasma Sintering Process
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Typical Microstructure of the Joints Bonded at 760 °C for 5 Min
3.2. Effects of Bonding Temperature on the Microstructure of the Joints
3.3. Mechanical Properties of the Joints
4. Discussion
4.1. Forming Mechanism of the Joints During Bonding
4.2. Relationship Between the Microstructure and Mechanical Properties of the Joints
5. Conclusions
- (1)
- The microstructure of the joints bonded at 760 °C was characterized as: 40Cr/Co-enriched Fe(s,s) interfacial layer/Ag(s,s) + Cu(s,s)/Co-riched Fe(s,s)/WC-8Co. The Fe(s,s) formed with realized the interfacial bonding of the joint, while the Ag and Cu provide good plastic deformation ability.
- (2)
- A higher bonding temperature would help to reduce the interfacial defect, which therefore strengthens the joint bonding strength. However, the bonding temperature should be controlled as the outflow of the filler would cause higher residual stresses, which would damage the joint strength.
- (3)
- In this study, fast joining between the WC-8Co and 40Cr steel was realized through the SPS joining method. The evaluation of other mechanical properties (like impact toughness) of the joints should be our focus in the next step. Furthermore, the post-bonding heat treatment [28] is believed to have a great influence on the microstructure, mechanical properties, as well as residual stresses of the joints. Therefore, the effects of heat treatment on the WC-8Co/40Cr joint should be carefully studied.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.W.; Song, X.Y.; Wang, H.B.; Liu, X.M.; Tang, F.W.; Lu, H. Complexions in WC-Co cemented carbides. Acta Mater. 2018, 149, 164–178. [Google Scholar] [CrossRef]
- Von Spalden, M.; Pötschke, J.; Michaelis, A. Novel Route for Preparing Diamond-Enhanced Cemented Carbides via Reactive Sintering. Metals 2023, 13, 1908. [Google Scholar] [CrossRef]
- Cai, H.; Jing, W.W.; Guo, S.D.; Liu, L.; Ye, Y.; Wen, Y. Effects of micro/nano CeO2 on the microstructure and properties of WC-10Co cemented carbides. Int. J. Refract. Met. Hard Mater. 2021, 95, 105432. [Google Scholar] [CrossRef]
- Premjarunan, S.; Tuchinda, K.; Worasaen, K. Study on the Effects of Cryogenic Treatment on WC-Co Cemented Carbide at Different Scales Using an Indentation Technique. Metals 2025, 15, 297. [Google Scholar] [CrossRef]
- Liu, D.; Yue, W.; Kang, J.; Wang, C. Effects of Different Substrates on the Formability and Densification Behaviors of Cemented Carbide Processed by Laser Powder Bed Fusion. Materials 2021, 14, 5027. [Google Scholar] [CrossRef]
- Solodkyi, I.; Bogomol, I.; Loboda, P. High-speed electron beam sintering of WC-8Co under controlled temperature conditions. Int. J. Refract. Met. Hard Mater. 2021, 102, 105730. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Liu, G.W.; Tao, J.N.; Shao, H.C.; Fu, H.; Pan, T.Z.; Qiao, G.J. Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal. J. Mater. Eng. Perform. 2017, 26, 488–494. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Liu, G.W.; Tao, J.N.; Guo, Y.J.; Wang, J.J.; Qiao, G.J. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: Microstructures and joint mechanical behavior. J. Mater. Sci. Technol. 2018, 34, 1180–1188. [Google Scholar] [CrossRef]
- Amelzadeh, M.; Mirsalehi, S.E. Influence of braze type on microstructure and mechanical behavior of WC-Co/steel dissimilar joints. J. Manuf. Process. 2018, 36, 450–458. [Google Scholar] [CrossRef]
- Habibi, F.; Samadi, A.; Nouri, M. Microstructural evolution during low-temperature brazing of WC-Co cemented carbide to AISI 4140 steel using a silver-based filler alloy. Int. J. Refract. Met. Hard Mater. 2023, 116, 106354. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Wang, S.H.; Xu, M.Y.; Du, A.; Ma, R.N.; Fan, Y.Z.; Zhao, X.; Cao, X.M. Microstructures and mechanical properties of YG18 cemented carbide/40Cr steel joints vacuum brazed using Ag-Cu-Ti filler metal. Vacuum 2022, 204, 111323. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Shao, S.; Xu, M.Y.; Ma, R.N.; Du, A.; Fan, Y.Z.; Zhao, X.; Cao, X.M. Microstructure and properties of WC-Co cemented carbide/40Cr steel joints brazed at low-temperature with Ag-Cu-In-Ti filler alloy. Int. J. Refract. Met. Hard Mater. 2023, 111, 106092. [Google Scholar] [CrossRef]
- Yan, X.C.; Hu, J.; Zhang, X.; Xu, W. Obtaining superior low-temperature wear resistance in Q&P-processed medium Mn steel with a low initial hardness. Tribol. Int. 2022, 175, 107803. [Google Scholar] [CrossRef]
- Hejripour, F.; Aidun, D.K. Consumable selection for arc welding between Stainless Steel 410 and Inconel 718. J. Mater. Process. Technol. 2017, 245, 287–299. [Google Scholar] [CrossRef]
- Xu, Q.P.; Ren, W.J.; Zhang, L.P.; Gong, H.Y.; Yang, S.L. Analysis of Formation and Interfacial WC Dissolution Behavior of WC-Co/Invar Laser-TIG Welded Joints. J. Mater. Eng. Perform. 2013, 22, 613–623. [Google Scholar] [CrossRef]
- Ma, S.Y.; Li, B.B.; Ma, Y.F.; Zhang, P.Y.; Xu, P.Q. Effect of brazing filler metals and welding parameters on laser welding-brazing joints of WC-Co to S1045. Metals 2022, 12, 1780. [Google Scholar] [CrossRef]
- Chen, H.S.; Feng, K.Q.; Wei, S.F.; Xiong, J.; Guo, Z.X.; Wang, H. Microstructure and properties of WC-Co/3Cr13 joints brazed using Ni electroplated interlayer. Int. J. Refract. Met. Hard Mater. 2012, 33, 70–74. [Google Scholar] [CrossRef]
- Hbibi, F.; Mostafapour, A.; Heydarpour, K. Microstructural evaluation and mechanical properties of WC-6%Co/AISI 1045 steel joints brazed by copper, brass, and Ag-based filler metals: Selection of the filler material. J. Adv. Join. Process. 2024, 9, 100212. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, H.; Wang, Q.Y.; Li, Y.X. Effect of brazing temperature and holding time on joint properties of induction brazed WC-Co/carbon steel using Ag-based alloy. J. Mater. Process. Technol. 2016, 229, 562–569. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, G.K.; Yang, M.Y.; Li, M.N.; Feng, X.X.; Lei, Y.C. An in situ 3D core-sheath interlayer utilized for reinforcing a WC-Co/3Cr13 brazed joint. J. Am. Ceram. Soc. 2024, 107, 5981–5992. [Google Scholar] [CrossRef]
- Miriyev, A.; Stern, A.; Tuval, E.; Kalabukhov, S.; Hooper, Z.; Frage, N. Titanium to steel joining by spark plasma sintering (SPS) technology. J. Mater. Process. Technol. 2012, 213, 161–166. [Google Scholar] [CrossRef]
- Tokita, M. Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization. Ceramics 2021, 4, 160–198. [Google Scholar] [CrossRef]
- Kong, W.Q.; Li, X.F.; Chen, B.Y.; Wang, C.Y.; Chu, H.J.; Chen, Y.T.; Hua, P.; Zhou, W. Microstructure and mechanical properties of diffusion bonded W/MA956 steel joints with a titanium interlayer by SPS. J. Adhes. Sci. Technol. 2019, 33, 1847–1857. [Google Scholar] [CrossRef]
- Amelzadeh, M.; Mirsalehi, S.E. Dissimilar joining of WC-Co to steel by low-temperature brazing. Mater. Sci. Eng. B 2020, 259, 114597. [Google Scholar] [CrossRef]
- Nahri, S.; Samadi, A. TLP Bonding of WC-6Co to 1045 Steel Using Multi-Interlayer of Ni/Cu/Sn/Cu/Ni. Metall. Mater. Trans. B 2025, 56, 1004–1017. [Google Scholar] [CrossRef]
- Hajra, J.P. Gibbs energy measurements of bcc and fcc Fe-Co solid solutions in Range 1023-1473 K. J. Mater. Sci. Technol. 2013, 2, 773–776. [Google Scholar] [CrossRef]
- Jiang, P.F.; Zheng, H.; Xiong, J.; Rabczuk, T. The localized radial basis function collocation method for dendritic solidification, solid phase sintering and wetting phenomenon based on phase field. J. Comput. Phys. 2025, 520, 113515. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, D.; Ning, F. Effects of heat treatment on microstructure and mechanical properties of 17-4PH/IN625 bimetallic parts fabricated through extrusion-based sintering-assisted additive manufacturing. Mater. Sci. Addit. Manuf. 2024, 3, 3281. [Google Scholar] [CrossRef]









| Spots | Compositions (at.%) | Phases | ||||
|---|---|---|---|---|---|---|
| Ag | Cu | Fe | Co | W | ||
| A | 70.6 | 29.4 | - | - | - | Ag(s,s) |
| B | 24.7 | 75.3 | - | - | - | Cu(s,s) |
| C | - | - | 63.8 | 24.3 | 11.9 | Fe(s,s) |
| D | 1.9 | 6.8 | 71.2 | 20.1 | - | Fe(s,s) |
| Spots | Compositions (at.%) | Phases | |||||
|---|---|---|---|---|---|---|---|
| Ag | Cu | Fe | Co | W | Cr | ||
| A1 | 70.2 | 29.8 | - | - | - | - | Ag(s,s) |
| B1 | 49.1 | 50.9 | - | - | - | - | Cu(s,s) |
| C1 | - | 5.8 | 38.5 | 11.5 | 44.3 | - | Fe(s,s) |
| D1 | 3.8 | 10.2 | 74.4 | 10.5 | 1.1 | - | Fe(s,s) |
| E1 | 4.1 | 6.1 | 65.0 | 22.6 | 2.2 | - | Fe(s,s) |
| F1 | 65.4 | 10.4 | 24.2 | - | - | - | Ag(s,s) |
| G1 | 30.4 | 5.2 | 57.9 | 6.5 | - | - | Fe(s,s) |
| H1 | - | 2.8 | 64.6 | 29.0 | 2.6 | 1.0 | Fe(s,s) |
| I1 | - | - | 30.5 | 27.2 | 42.3 | - | Fe(s,s) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yu, C.; Lin, X.; Xu, H. Fast Joining of the 40Cr/WC-8Co Combination with Ag28Cu Interlaer Through the Spark Plasma Sintering Process. Coatings 2025, 15, 1355. https://doi.org/10.3390/coatings15111355
Wang S, Yu C, Lin X, Xu H. Fast Joining of the 40Cr/WC-8Co Combination with Ag28Cu Interlaer Through the Spark Plasma Sintering Process. Coatings. 2025; 15(11):1355. https://doi.org/10.3390/coatings15111355
Chicago/Turabian StyleWang, Shenggang, Chang Yu, Xuanyi Lin, and Haitao Xu. 2025. "Fast Joining of the 40Cr/WC-8Co Combination with Ag28Cu Interlaer Through the Spark Plasma Sintering Process" Coatings 15, no. 11: 1355. https://doi.org/10.3390/coatings15111355
APA StyleWang, S., Yu, C., Lin, X., & Xu, H. (2025). Fast Joining of the 40Cr/WC-8Co Combination with Ag28Cu Interlaer Through the Spark Plasma Sintering Process. Coatings, 15(11), 1355. https://doi.org/10.3390/coatings15111355

