Thermodynamic, Kinetic, and Crystal Face Anisotropy Analysis of WC Coating on Diamond Surfaces
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Zang, J.; Su, S.; Zhang, C.; Zhao, L.; Yuan, Y.; Wang, Y.; Lu, J.; Xu, X.; Zhang, P. Mechanochemical grinding diamond film using titanium-coated diamond active abrasives prepared by vacuum micro-evaporation coating. Appl. Surf. Sci. 2023, 638, 158094. [Google Scholar] [CrossRef]
- Liu, J.; Liang, B.; Jiao, M. Low-Temperature Synthesis of TiC Coating on Diamond Surface by Thermal Explosion Reaction. J. Superhard Mater. 2024, 46, 106–111. [Google Scholar] [CrossRef]
- Banik, S.; Indhu, R.; Arunachalam, N.; Rao, M.R. Femtosecond laser-induced surface structuring for improved surface characteristics of single crystal diamond. Diam. Relat. Mater. 2025, 154, 112240. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Wang, D.; Wang, W.G.; Xiao, B.L.; Ma, Z.Y. Effect of Nanometer WC Coating on Thermal Conductivity of Diamond/6061 Composites. Acta Met. Sin. Engl. Lett. 2022, 36, 118–126. [Google Scholar] [CrossRef]
- Che, Z.; Li, J.; Wang, Q.; Wang, L.; Zhang, H.; Zhang, Y.; Wang, X.; Wang, J.; Kim, M.J. The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites. Compos. Part A Appl. Sci. Manuf. 2018, 107, 164–170. [Google Scholar] [CrossRef]
- Chen, G.; Yang, W.; Xin, L.; Wang, P.; Liu, S.; Qiao, J.; Hu, F.; Zhang, Q.; Wu, G. Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method. J. Alloys Compd. 2018, 735, 777–786. [Google Scholar] [CrossRef]
- Jia, J.; Bai, S.; Xiong, D.; Xiao, J.; Yan, T. Enhanced thermal conductivity in diamond/copper composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. Mater. Chem. Phys. 2020, 252, 123422. [Google Scholar] [CrossRef]
- Xin, L.; Tian, X.; Yang, W.; Chen, G.; Qiao, J.; Hu, F.; Zhang, Q.; Wu, G. Enhanced stability of the Diamond/Al composites by W coatings prepared by the magnetron sputtering method. J. Alloys Compd. 2018, 763, 305–313. [Google Scholar] [CrossRef]
- Ukhina, A.V.; Dudina, D.V.; Esikov, M.A.; Samoshkin, D.A.; Stankus, S.V.; Skovorodin, I.N.; Galashov, E.N.; Bokhonov, B.B. The influence of morphology and composition of metal–carbide coatings deposited on the diamond surface on the properties of copper–diamond composites. Surf. Coatings Technol. 2020, 401, 126272. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, R.; Cai, Z.; Peng, C.; Feng, Y.; Zhang, L. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf. Coat. Technol. 2015, 277, 299–307. [Google Scholar] [CrossRef]
- Liang, B.; Luo, Y.; Zhang, W.; Zhang, J.; Jiao, M. Sputtering Coating on the Surface of Diamond Particles Using High Temperature Generated by Thermal Explosion Reaction. J. Superhard Mater. 2024, 46, 197–203. [Google Scholar] [CrossRef]
- Ukhina, A.; Dudina, D.; Bokhonov, B.; Savintseva, D.; Samoshkin, D.; Stankus, S. Morphological features and phase composition of W-containing coatings formed on diamond via its interaction with WO3. Diam. Relat. Mater. 2022, 123, 108876. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Xu, Z.; Qu, X. Preparation of W-Plated Diamond and Improvement of Thermal Conductivity of Diamond-WC-Cu Composite. Metals 2021, 11, 437. [Google Scholar] [CrossRef]
- Xiang, D.; Yin, L.W.; Liu, K.G.; Jia, L.Q. Study of W Metallic Coating Layer on Diamond Surface by Hydrothermal Method. Adv. Mater. Res. 2009, 79–82, 699–702. [Google Scholar] [CrossRef]
- Xiang, D.; Jia, L.Q.; Liu, K.G. Structure and Performance of Chemical Duplex Plating Ti Metal Layer on Diamond Surface by Hydrothermal Method. Adv. Mater. Res. 2014, 936, 1676–1680. [Google Scholar] [CrossRef]
- Liu, D.-G.; Zheng, L.; Zhang, L.; Tan, X.-Y.; Luo, L.-M.; Ma, H.-R.; Liu, J.-Q.; Wu, Y.-C. Effect of W-coated diamond on the microstructure and thermal conductivity of diamond/W matrix composites for plasma-facing materials (PFMs). Fusion Eng. Des. 2019, 144, 141–147. [Google Scholar] [CrossRef]
- Dong, Y.H.; Zhang, R.Q.; Zhou, L.; Chu, A.M.; Luo, T.G.; Chen, D.Z.; Chen, Q.J.; Ye, Z.G.; Zhang, B.L. Formation Mechanism and Properties of Thickness-Controllable Tungsten Coating on Diamond Surface by Salt Bath Plating. Mater. Sci. Forum 2018, 933, 264–273. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, J.; Li, J.; Chen, W.; Chen, P.; Luo, L.; Liu, J. Tungsten-coated diamond powders prepared by microwave-heating salt-bath plating. Powder Technol. 2018, 338, 274–279. [Google Scholar] [CrossRef]
- Okada, T.; Fukuoka, K.; Arata, Y.; Yonezawa, S.; Kiyokawa, H.; Takashima, M. Tungsten carbide coating on diamond particles in molten mixture of Na2CO3 and NaCl. Diam. Relat. Mater. 2015, 52, 11–17. [Google Scholar] [CrossRef]
- Chen, W.; Qian, J.; Peng, S.; Fan, L.; Zheng, H.; Zhang, Z.; Zheng, P.; Zheng, L.; Zhang, Y. Thermal properties of tungsten/tungsten carbide-coated double-size diamond/copper composite. Diam. Relat. Mater. 2023, 135, 109818. [Google Scholar] [CrossRef]
- Kozlov, D.A.; Shcherbakov, A.B.; Kozlova, T.O.; Angelov, B.; Kopitsa, G.P.; Garshev, A.V.; Baranchikov, A.E.; Ivanova, O.S.; Ivanov, V.K. Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Nanoparticles. Molecules 2019, 25, 154. [Google Scholar] [CrossRef] [PubMed]
- Lisitsyna, L.A.; Popov, A.I.; Karipbayev, Z.T.; Mussakhanov, D.A.; Feldbach, E. Luminescence of MgF2-WO3 ceramics synthesized in the flux of 1.5 MeV electron beam. Opt. Mater. 2022, 133, 112999. [Google Scholar] [CrossRef]
- Zubkins, M.; Vibornijs, V.; Strods, E.; Aulika, I.; Zajakina, A.; Sarakovskis, A.; Kundzins, K.; Korotkaja, K.; Rudevica, Z.; Letko, E.; et al. A stability study of transparent conducting WO3/Cu/WO3 coatings with antimicrobial properties. Surfaces Interfaces 2023, 41, 103259. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y. Study on diffusion plated tungsten on diamond surface. Jingangshi Yu Moliao Moju Gongcheng/Diam. Abras. Eng. 2015, 35, 17–20. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Wang, D.; Ni, D.; Chen, L.; Ma, Z. Effect of nanometer TiC coated diamond on the strength and thermal conductivity of diamond/Al composites. Mater. Chem. Phys. 2016, 182, 256–262. [Google Scholar] [CrossRef]
- Xu, X.; Wan, B.; Li, W.; Liu, F.; Zhai, T.; Zhang, L.; Tang, G. Reaction mechanisms for Ti coatings on diamond. Carbon 2024, 226, 119206. [Google Scholar] [CrossRef]
- Wang, C.; Li, H.; Tian, W.; Hu, J.; Liao, W. Preparation and properties of tungsten mi-cro-deposited on diamond (100)–(111) facets/Cu composites. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sini-Ca 2022, 39, 6004–6016. [Google Scholar] [CrossRef]
- Mohammadzadeh, H.; Barati, M. A comprehensive evaluation of non-isothermal simultaneous reduction and carburization kinetics of W-Ni oxide nano-composite powder. Mater. Chem. Phys. 2021, 272, 125027. [Google Scholar] [CrossRef]
- Polyzos, I.; Bianchi, M.; Rizzi, L.; Koukaras, E.N.; Parthenios, J.; Papagelis, K.; Sordan, R.; Galiotis, C. Suspended monolayer graphene under true uniaxial deformation. Nanoscale 2015, 7, 13033–13042. [Google Scholar] [CrossRef] [PubMed]
- Cai, X. Investigation of Formation Mechanism and Mechanical Properties of the Tungsten Carbide Cemented Layer Produced by a Diffusion-Controlled Reaction[D].null. 2019. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?filename=1019858027.nh&dbname=CDFDTEMP (accessed on 20 October 2025). (In Chinese).










| Temperature Range (°C) | Experimental Temperature (°C /min) |
|---|---|
| <500 | 5 |
| 500–800 | 10 |
| 800–1000 | 5 |
| >1000 | 3 |
| Sample | Experimental Temperature (°C) | Holding Time (min) |
|---|---|---|
| 1000-4 h | 1000 | 240 |
| 1000-5 h | 1000 | 300 |
| 1000-6 h | 1000 | 360 |
| 1050-30 min | 1050 | 30 |
| 1050-1 h | 1050 | 60 |
| 1050-90 min | 1050 | 90 |
| 1050-2 h | 1050 | 120 |
| 1100-15 min | 1100 | 15 |
| 1100-2 h | 1100 | 120 |
| 1100-3 h | 1100 | 180 |
| 1100-4 h | 1100 | 240 |
| 1100-6 h | 1100 | 360 |
| 1200-15 min | 1200 | 15 |
| 1200-1 h | 1200 | 60 |
| 1200-2 h | 1200 | 120 |
| 1200-4 h | 1200 | 240 |
| 1300-5 min | 1300 | 5 |
| 1300-15 min | 1300 | 15 |
| 1300-1 h | 1300 | 60 |
| 1300-2 h | 1300 | 120 |
| 1300-3 h | 1300 | 180 |
| 1300-4 h | 1300 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Meng, Q.; Mao, X.; Yuan, M.; Huang, S.; Qiu, Y. Thermodynamic, Kinetic, and Crystal Face Anisotropy Analysis of WC Coating on Diamond Surfaces. Coatings 2025, 15, 1298. https://doi.org/10.3390/coatings15111298
Wang S, Meng Q, Mao X, Yuan M, Huang S, Qiu Y. Thermodynamic, Kinetic, and Crystal Face Anisotropy Analysis of WC Coating on Diamond Surfaces. Coatings. 2025; 15(11):1298. https://doi.org/10.3390/coatings15111298
Chicago/Turabian StyleWang, Sifan, Qingnan Meng, Xinyue Mao, Mu Yuan, Shiyin Huang, and Yuting Qiu. 2025. "Thermodynamic, Kinetic, and Crystal Face Anisotropy Analysis of WC Coating on Diamond Surfaces" Coatings 15, no. 11: 1298. https://doi.org/10.3390/coatings15111298
APA StyleWang, S., Meng, Q., Mao, X., Yuan, M., Huang, S., & Qiu, Y. (2025). Thermodynamic, Kinetic, and Crystal Face Anisotropy Analysis of WC Coating on Diamond Surfaces. Coatings, 15(11), 1298. https://doi.org/10.3390/coatings15111298
