Research on Corrosion Behavior of P110SS Tubing in High-Temperature and High-Pressure H2S Environment
Abstract
1. Introduction
2. Experiment
3. Results and Analysis
3.1. Corrosion Rate
3.2. Macroscopic Corrosion Morphology
3.3. Microscopic Corrosion Morphology
3.4. Corrosion Product Composition
3.5. Microscopic Morphology of Corrosion Product Cross-Sections
3.6. Ion Selectivity of Corrosion Products
4. Discussion
5. Conclusions
- (1)
- At 60 °C, increasing the H2S partial pressure from 0.1 MPa to 0.5 MPa has no significant effect on the corrosion rate. At 160 °C, increasing the H2S partial pressure from 0.1 MPa to 0.5 MPa results in a decrease in the corrosion rate.
- (2)
- When the H2S partial pressure remains constant, the corrosion rate increases with temperature, following an overall S-shaped trend. A significant increase in the corrosion rate is observed between 100 °C and 140 °C. From 140 °C to 180 °C, pitting corrosion occurs.
- (3)
- The primary corrosion product is Mackinawite below 100 °C. Between 100 °C and 140 °C, it transitions from Mackinawite to pyrrhotite, and from 140 °C to 180 °C, the corrosion product remains pyrrhotite. The Mackinawite formed at lower temperatures exhibits cation selectivity, while the pyrrhotite formed at higher temperatures exhibits anion selectivity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Ren, L.; Lin, C.; Lin, R.; Hu, D.; Wu, J.; Song, Y.; Shen, C.; Tang, D.; Jiang, H. A review of deep and ultra-deep shale gas fracturing in China: Status and directions. Renew. Sustain. Energy Rev. 2025, 209, 115111. [Google Scholar] [CrossRef]
- Sun, J.; Yang, J.; Bai, Y.; Lyu, K.; Liu, F. Research progress and development of deep and ultra-deep drilling fluid technology. Pet. Explor. Dev. 2024, 51, 1022–1034. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, J.; Long, Y.; Li, L.; Xie, J. Failure analysis of S13Cr-110 telescopic tube used in an ultra-deep gas well. Eng. Fail. Anal. 2023, 146, 107099. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, S.; Huang, H.; He, J.; Ouyang, Z.; Yu, S.; Li, X.; Fu, A.; Feng, Y. Corrosion behavior and failure mechanism of V150 drill pipe in HPHT and ultra-deep drilling process. Eng. Fail. Anal. 2024, 158, 107974. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, M.; Hu, T.; Xue, G.; Chen, F.; Zhao, H.; Zhou, H.; Lei, Y.; Zhu, K. Effects of H2S content on the corrosion behavior of gas storage reservoir injection and production pipeline steel in CO2-H2S environment. Mater. Today Commun. 2024, 41, 110364. [Google Scholar] [CrossRef]
- Pu, L.; Xu, P.; Xu, M.; Song, J.; He, M. Lost circulation materials for deep and ultra-deep wells: A review. J. Pet. Sci. Eng. 2022, 214, 110404. [Google Scholar] [CrossRef]
- Yue, Y.; Yin, Z.; Li, S.; Zhang, Z.; Zhang, Q. Corrosion Behavior of Mild Steel in Various Environments Including CO2, H2S, and Their Combinations. Metals 2025, 15, 440. [Google Scholar] [CrossRef]
- Liao, K.; Qin, M.; Yang, N.; He, G.; Zhao, S.; Zhang, S. Corrosion main control factors and corrosion degree prediction charts in H2S and CO2 coexisting associated gas pipelines. Mater. Chem. Phys. 2022, 292, 126838. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; He, S.; Zhang, L.; Xing, X.; Li, H.; Lu, M. Unraveling the effect of H2S on the corrosion behavior of high strength sulfur-resistant steel in CO2/H2S/Cl− environments at ultra high temperature and high pressure. J. Nat. Gas Sci. Eng. 2022, 100, 104477. [Google Scholar] [CrossRef]
- Okonkwo, P.; Shakoor, R.; Benamor, A.; Amer Mohamed, A.M.; Al-Marri, M.J.F. Corrosion Behavior of API X100 Steel Material in a Hydrogen Sulfide Environment. Metals 2017, 7, 109. [Google Scholar] [CrossRef]
- Long, W.; Wang, X.; Hu, H.; Lu, W.; Liu, L.; Zhou, M.; Cao, S.; Chen, X. Primary Corrosion Cause of P110S Steel Tubing Corrosion Thinning in CO2–H2S Well and Its Remaining Life Prediction. Processes 2023, 11, 333. [Google Scholar] [CrossRef]
- Wang, J.-B.; Xiao, G.-C.; Zhao, W.; Zhang, B.R.; Rao, W.F. Microstructure and Corrosion Resistance to H2S in the Welded Joints of X80 Pipeline Steel. Metals 2019, 9, 1325. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, W.; Li, G.; Feng, Y.; Zhang, J. Effect of CO2/H2S and Applied Stress on Corrosion Behavior of 15Cr Tubing in Oil Field Environment. Metals 2020, 10, 409. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, L.; Li, Y.; Du, Z.; Zhu, Q.; Han, Z. The synergistic effect of temperature, H2S/CO2 partial pressure and stress toward corrosion of X80 pipeline steel. Eng. Fail. Anal. 2023, 146, 107079. [Google Scholar] [CrossRef]
- Qin, M.; Liao, K.; He, G.; Zou, Q.; Zhao, S.; Zhang, S. Corrosion mechanism of X65 steel exposed to H2S/CO2 brine and H2S/CO2 vapor corrosion environments. J. Nat. Gas Sci. Eng. 2022, 106, 104774. [Google Scholar] [CrossRef]
- Wang, H.; Yu, C.; Gao, X.; Du, L.; Wang, H. Corrosion Behavior of Ferrite-Pearlite Steel Exposed to H2S/CO2 Environment. Int. J. Electrochem. Sci. 2020, 15, 6737–6747. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Li, F.; Zeng, W.; Wang, B.; Guo, Y.; Wu, J.; Chen, Y.; Wang, M.; Lu, M. Study on corrosion behavior of P110S steel in CO2-H2S-saturated solution. Int. J. Electrochem. Sci. 2022, 17, 22018. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, X.; Du, L.; Li, J.; Li, P.; Yu, C.; Misra, R.D.K.; Wang, Y. Comparison of corrosion behaviour of low-alloy pipeline steel exposed to H2S/CO2-saturated brine and vapour-saturated H2S/CO2 environments. Electrochim. Acta 2017, 232, 528–541. [Google Scholar] [CrossRef]
- Wen, X.; Bai, P.; Luo, B.; Zheng, S.; Chen, C. Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment. Corros. Sci. 2018, 139, 124–140. [Google Scholar] [CrossRef]
- da Silva, S.C.; de Souza, E.A.; Pessu, F.; Hua, Y.; Barker, R.; Neville, A.; Gomes, J.A.D.C.P. Cracking mechanism in API 5L X65 steel in a CO2-saturated environment. Eng. Fail. Anal. 2019, 99, 273–291. [Google Scholar] [CrossRef]
- Shi, F.X.; Zhang, L.; Yang, J.W.; Lu, M.; Ding, J.; Li, H. Polymorphous FeS corrosion products of pipeline steel under highly sour conditions. Corros. Sci. 2016, 102, 103–113. [Google Scholar] [CrossRef]
- Iglesias, N.; Díaz, E. Influence of H2S and CO2 Partial Pressures and Temperature on the Corrosion of Superduplex S32750 Stainless Steel. Corros. Mater. Degrad. 2025, 6, 20. [Google Scholar] [CrossRef]
- Nimmervoll, M.; Mori, G.; Bucher, E.; Schmid, A.; Haubner, R. Corrosion of N10276 in a H2S, HCl, and CO2 Containing Atmosphere at 480 °C and 680 °C. Metals 2021, 11, 1817. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Z.; Xie, J.; Li, X.; Song, W.; Zhou, J.; He, Q. The Synergistic Influence of Trace Impurities and Temperature on the Corrosion Behavior of Tubing in Supercritical CO2 Environment. Coatings 2025, 15, 944. [Google Scholar] [CrossRef]
- Sun, J.; Sun, C.; Lin, X.; Cheng, X.; Liu, H. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature. Materials 2016, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.S.; Ghorbani, M.; Afshar, A.; Rahmaniyan, M. Modeling of carbon dioxide corrosion of steel with iron carbonate precipitation. Corros. Eng. Sci. Technol. 2009, 44, 128–136. [Google Scholar] [CrossRef]
- Nesic, S.; Lee, K.L.J. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—Part 3: Film growth model. Corros. Sci. 2000, 42, 1353–1371. [Google Scholar]
- Miyuki, H.; Yamashita, M.; Fujiwara, M.; Misawa, T. Ion selective properties of rust membranes and protective effect of stable rust layer formed on weathering steel. Zair. Kankyo 1998, 47, 186–192. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, C.; Zhao, X.; Chi, H.; He, Y.; Li, Y.; Qi, Y.; Yu, H. Ion-selectivity of iron sulfides and their effect on H2S corrosion. Corros. Sci. 2019, 158, 108085. [Google Scholar] [CrossRef]
- Li, T.; Wu, J.; Frankel, G.S. Localized corrosion: Passive film breakdown vs. Pit growth stability, Part VI: Pit dissolution kinetics of different alloys and a model for pitting and repassivation potentials. Corros. Sci. 2021, 182, 109277. [Google Scholar] [CrossRef]
- Liu, J.; Chen, C.; Lei, B.; Zhu, X.; Wan, H.; Yu, H.; Jia, X. Mechanism of transformation of ion-selectivity of pyrrhotite by hypervalent anion (SO42−) and its effect on corrosion behavior. Surf. Interfaces 2025, 62, 106200. [Google Scholar] [CrossRef]







| C | Si | Mn | Cr | Ni | Ti | Nb | Mo | P | S | Fe |
|---|---|---|---|---|---|---|---|---|---|---|
| 0.27 | 0.25 | 0.6 | 0.52 | 0.26 | 0.02 | 0.005 | 0.7 | 0.008 | 0.0021 | Balance |
| Experimental Temperature | Corrosion Medium | H2S Partial Pressure (MPa) | CO2 Partial Pressure (MPa) | Medium Flow Rate (m/s) | Experimental Duration (d) |
|---|---|---|---|---|---|
| 60 °C | Formation water | 0.1 | 0.25 | 2 | 30 |
| 60 °C | 0.5 | 0.25 | |||
| 160 °C | 0.1 | 0.25 | |||
| 160 °C | 0.5 | 0.25 |
| Experimental Temperature | Corrosion Medium | H2S Partial Pressure (MPa) | CO2 Partial Pressure (MPa) | Medium Flow Rate (m/s) | Experimental Duration (d) |
|---|---|---|---|---|---|
| 60 °C | Formation water | 0.5 | 0.25 | 2 | 30 |
| 100 °C | |||||
| 140 °C | |||||
| 180 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zha, L.; Liu, Y.; Xu, K.; Tao, J.; Yu, H. Research on Corrosion Behavior of P110SS Tubing in High-Temperature and High-Pressure H2S Environment. Coatings 2025, 15, 1244. https://doi.org/10.3390/coatings15111244
Lu J, Zha L, Liu Y, Xu K, Tao J, Yu H. Research on Corrosion Behavior of P110SS Tubing in High-Temperature and High-Pressure H2S Environment. Coatings. 2025; 15(11):1244. https://doi.org/10.3390/coatings15111244
Chicago/Turabian StyleLu, Junan, Lei Zha, Yong Liu, Kaiyun Xu, Jin Tao, and Haobo Yu. 2025. "Research on Corrosion Behavior of P110SS Tubing in High-Temperature and High-Pressure H2S Environment" Coatings 15, no. 11: 1244. https://doi.org/10.3390/coatings15111244
APA StyleLu, J., Zha, L., Liu, Y., Xu, K., Tao, J., & Yu, H. (2025). Research on Corrosion Behavior of P110SS Tubing in High-Temperature and High-Pressure H2S Environment. Coatings, 15(11), 1244. https://doi.org/10.3390/coatings15111244

