Seismic Damage Risk Assessment of Reinforced Concrete Bridges Considering Structural Parameter Uncertainties
Abstract
1. Introduction
2. Finite Element Model Development of the Study Object
3. Classification of Bridge Seismic Damage Levels and Selection of Damage Parameters
3.1. Classification of Bridge Seismic Damage Levels
3.2. Seismic Damage Parameters for Bridges
3.2.1. Seismic Damage Parameters of Bridge Piers
3.2.2. Seismic Damage Parameters of Bearings
4. Probabilistic Seismic Hazard Assessment of the Study Site
4.1. Overview of the CPSHA Method
4.2. Case Study
5. Seismic Fragility Assessment of the Study Object Based on the Monte Carlo Method and Response Surface Method
5.1. Uncertainty Analysis of Structural-Seismic Motion Samples
5.1.1. Probability Distribution and Normalization of Random Variables
5.1.2. Selection of Ground Motion Inputs
5.2. Development of Response Surface Model
5.2.1. Introduction to Response Surface Model
5.2.2. IDA Analysis Based on the CCD Method
5.2.3. Solution of Response Surface Model
5.3. Plotting of Seismic Fragility Curves for the Research Object
5.3.1. Calculation of Seismic Exceedance Probability Based on Monte Carlo Method
5.3.2. Seismic Fragility Curves of Bridge Piers
5.3.3. Seismic Fragility Curves of Bearings
5.4. Comparative Analysis and Methodological Enhancement
6. Seismic Probability Risk Assessment of the Research Object Based on Seismic Hazard Curve Method
6.1. Basic Theory
6.2. Case Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, Y.Y.; Zang, Y.; Meng, L.Y.; Wang, Y.; Deng, S.; Ma, Y.; Xie, M. A summary of seismic activities in and around China in 2021. Earthq. Res. Adv. 2022, 2, 100157. [Google Scholar] [CrossRef]
- Liu, J.L.; Jia, H.X.; Lin, J.Q.; Hu, H. Seismic Damage Rapid Assessment of Road Networks considering Individual Road Damage State and Reliability of Road Networks in Emergency Conditions. Adv. Civ. Eng. 2020, 2020, 9631804. [Google Scholar] [CrossRef]
- Ozsarac, V.; Monteiro, R.; Calvi, G.M. Probabilistic seismic assessment of reinforced concrete bridges using simulated records. Struct. Infrastruct. Eng. 2023, 19, 554–574. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Pan, H.; Jin, Y.; Hu, Y.X. Discussion about the relationship between seismic belt and seismic statistical zone. Acta Seismol. Sin. 2003, 16, 323–329. [Google Scholar] [CrossRef]
- Bi, J.M.; Song, C.; Cao, F.Y. Declustering characteristics of the North China Plain seismic belt and its effect on probabilistic seismic hazard analysis. Sci. Rep. 2024, 14, 22170. [Google Scholar] [CrossRef] [PubMed]
- Vamvatsikos, D.; Cornell, C.A. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information. Earthq. Eng. Struct. Dyn. 2005, 34, 1573–1600. [Google Scholar] [CrossRef]
- Wang, Q.A.; Wu, Z.Y.; Liu, S.K. Seismic fragility analysis of highway bridges considering multi dimensional performance limit state. Earthq. Eng. Eng. Vib. 2012, 11, 185–193. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.B.; Sun, W.L.; Peng, Y.B. Advances of the probability density evolution method for nonlinear stochastic systems. Probabilistic Eng. Mech. 2012, 28, 132–142. [Google Scholar] [CrossRef]
- Yin, C.; Li, Y.; Liu, F.F. Probability risk assessment and management of embankment seismic damages based on CPSHA-PSDA. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1563–1574. [Google Scholar] [CrossRef]
- Che, F.; Yin, C.; Zhang, H.; Tang, G.T.; Hu, Z.N.; Liu, D.; Li, Y.; Huang, Z.F. Assessing the risk probability of the embankment seismic damage using Monte Carlo method. Adv. Civ. Eng. 2020, 2020, 8839400. [Google Scholar] [CrossRef]
- Abeysiriwardena, T.M.; Wijesundara, K.K.; Nascimbene, R. Seismic risk assessment of typical reinforced concrete frame school buildings in Sri Lanka. Buildings 2023, 13, 2662. [Google Scholar] [CrossRef]
- Cheng, X.L.; Li, Q.Q.; Hai, R.; He, X.F. Study on seismic vulnerability analysis of the interaction system between saturated soft soil and subway station structures. Sci. Rep. 2023, 13, 7410. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.H.; Zhou, Z.; Gan, D. Modeling of cyclically loaded square thin-walled CSFT columns stiffened by diagonal ribs using OpenSees. Thin-Walled Struct. 2023, 187, 110736. [Google Scholar] [CrossRef]
- Tatar, A.; Baker, A.M.; Dowden, D.M. A generalized method for numerical modeling of seismically resilient friction dampers using flat slider bearing element. Eng. Struct. 2023, 275, 115248. [Google Scholar] [CrossRef]
- Guan, M.S.; Hang, X.R.; Wang, M.S.; Zhao, H.Y.; Liang, Q.Q.; Wang, Y. Development and implementation of shear wall finite element in OpenSees. Eng. Struct. 2024, 304, 117639. [Google Scholar] [CrossRef]
- GB/T 24335-2009; Classification of Earthquake Damage to Buildings and Special Structures. National Technical Committee for Seismological Standardization: Beijing, China, 2009.
- Bhatta, S.; Dang, J. Seismic damage prediction of RC buildings using machine learning. Earthq. Eng. Struct. Dyn. 2023, 52, 3504–3527. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Mizutani, T. A Physics-Informed Neural Network for the Nonlinear Damage Identification in a Reinforced Concrete Bridge Pier Using Seismic Responses. Struct. Control Health Monit. 2024, 2024, 5532909. [Google Scholar] [CrossRef]
- Qiu, W.H.; Wang, K.H.; Guo, W.Z. Seismic Performance of the Wall Pier of Covered Bridge in the Weak Direction. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 48, 4183–4200. [Google Scholar] [CrossRef]
- Song, S.; Qian, Y.J.; Liu, J.; Xie, X.R.; Wu, G. Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands. Earthq. Eng. Eng. Vib. 2019, 18, 363–377. [Google Scholar] [CrossRef]
- Zhong, H.Q.; Yuan, W.C.; Dang, X.Z.; Deng, X.W. Seismic performance of composite rubber bearings for highway bridges: Bearing test and numerical parametric study. Eng. Struct. 2022, 253, 113680. [Google Scholar] [CrossRef]
- Xu, W.J.; Wu, J.; Gao, M.T. Seismic hazard analysis of China’s mainland based on a new seismicity model. Int. J. Disaster Risk Sci. 2023, 14, 280–297. [Google Scholar] [CrossRef]
- Iwata, D.; Nanjo, K.Z. Adaptive estimation of the Gutenberg–Richter b value using a state space model and particle filtering. Sci. Rep. 2024, 14, 4630. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.Y.; Feng, D.C.; Beer, M. Consistent seismic hazard and fragility analysis considering combined capacity-demand uncertainties via probability density evolution method. Struct. Saf. 2023, 103, 102330. [Google Scholar] [CrossRef]
- Pei, W.L.; Zhou, S.Y.; Zhuang, J.C.; Xiong, Z.Y.; Piao, J. Application and discussion of statistical seismology in probabilistic seismic hazard assessment studies. Sci. China (Earth Sci.) 2022, 65, 257–268. [Google Scholar] [CrossRef]
- Han, S.C.; Sun, J.Z.; Xiong, F. Analysis for site seismic hazard probability considering the orientation distribution of potential seismic sources. Nat. Hazards 2024, 121, 2433–2464. [Google Scholar] [CrossRef]
- Vandana; Dadhich, H.K.; Mittal, H.; Mishra, O.P. Ground motion prediction equation for NW Himalaya and its surrounding region. Quat. Sci. Adv. 2024, 13, 100136. [Google Scholar] [CrossRef]
- Eskandarinejad, A.; Shiau, J.; Keawsawasvong, S. Effect of Depth-Dependent Shear Wave Velocity Profiles on Site Amplification. Transp. Infrastruct. Geotechnol. 2022, 10, 1255–1283. [Google Scholar] [CrossRef]
- Zhong, Z.L.; Shen, Y.Y.; Zhao, M.; Li, L.Y.; Du, X.L. Seismic performance evaluation of two-story and three-span subway station in different engineering sites. J. Earthq. Eng. 2022, 26, 7505–7535. [Google Scholar] [CrossRef]
- Yin, K.S.; Xu, Y.; Li, J.Z.; Zhou, X. Gaussian process regression driven rapid life-cycle based seismic fragility and risk assessment of laminated rubber bearings supported highway bridges subjected to multiple uncertainty sources. Eng. Struct. 2024, 316, 118615. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Chen, J.B.; Li, J. The modified mesoscopic stochastic fracture model incorporating the random field of Young’s modulus for the uniaxial constitutive law of concrete. Probabilistic Eng. Mech. 2024, 75, 103585. [Google Scholar] [CrossRef]
- Chen, Y.X.; Zhang, J.Y.; Ma, J.C.; Zhou, S.L.; Liu, Y.S.; Zheng, Z.X. Tensile strength and fracture toughness of steel fiber reinforced concrete measured from small notched beams. Case Stud. Constr. Mater. 2022, 17, e01401. [Google Scholar] [CrossRef]
- Ge, F.W.; Tong, M.N.; Zhao, Y.G. A structural demand model for seismic fragility analysis based on three-parameter lognormal distribution. Soil Dyn. Earthq. Eng. 2021, 147, 106770. [Google Scholar] [CrossRef]
- Hu, X.N.; Fang, G.S.; Ge, Y.J. Uncertainty propagation of flutter derivatives and structural damping in buffeting fragility analysis of long-span bridges using surrogate models. Struct. Saf. 2024, 106, 102410. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhu, Z.W. Multi-objective optimization of a composite orthotropic bridge with RSM and NSGA-II algorithm. J. Constr. Steel Res. 2022, 188, 106938. [Google Scholar] [CrossRef]
- Sun, D.L.; Wang, J.; Wen, H.J.; Ding, Y.K.; Mi, C.L. Landslide susceptibility mapping (LSM) based on different boosting and hyperparameter optimization algorithms: A case of Wanzhou District, China. J. Rock Mech. Geotech. Eng. 2024, 16, 3221–3232. [Google Scholar] [CrossRef]
- Kong, D.H.; Luo, Q.; Zhang, W.S.; Jiang, L.W.; Zhang, L. Reliability analysis approach for railway embankment slopes using response surface method based Monte Carlo simulation. Geotech. Geol. Eng. 2022, 40, 4529–4538. [Google Scholar] [CrossRef]
- Pang, Y.T.; Meng, R.; Li, C.D.; Li, C. A probabilistic approach for performance-based assessment of highway bridges under post-earthquake induced landslides. Soil Dyn. Earthq. Eng. 2022, 155, 107207. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.L.; Hu, L.L.; Bao, Y.; Hancock, C. Application of Response Surface-Corrected Finite Element Model and Bayesian Neural Networks to Predict the Dynamic Response of Forth Road Bridges under Strong Winds. Sensors 2024, 24, 2091. [Google Scholar] [CrossRef]
- Huang, J.; Qiu, S.Q.; Rodrigue, D. Parameters estimation and fatigue life prediction of sisal fibre reinforced foam concrete. J. Mater. Res. Technol. 2022, 20, 381–396. [Google Scholar] [CrossRef]
- Cabanzo, C.; Mendes, N.; Akiyama, M.; Lourenço, P.B.; Matos, J.C. Probabilistic framework for seismic performance assessment of a multi-span masonry arch bridge employing surrogate modeling techniques. Eng. Struct. 2025, 325, 119399. [Google Scholar] [CrossRef]
- Ashrafifar, J.; Estekanchi, H. Life-cycle seismic fragility and resilience assessment of aging bridges using the endurance time method. Soil Dyn. Earthq. Eng. 2023, 164, 107524. [Google Scholar] [CrossRef]
- Li, S.Q.; Gardoni, P. Seismic loss assessment for regional building portfolios considering empirical seismic vulnerability functions. Bull. Earthq. Eng. 2024, 22, 487–517. [Google Scholar] [CrossRef]
- Kan, C.Y.; Tsai, C.C.; Chen, C.J. Simple method for probabilistic seismic landslide hazard analysis based on seismic hazard curve and incorporating uncertainty of strength parameters. Eng. Geol. 2023, 314, 107002. [Google Scholar] [CrossRef]












| Seismic Damage Levels | Damage Description |
|---|---|
| Intact | The bridge components remain undamaged, and normal operation is maintained. |
| Slight damage | Surface-level concrete spalling or cracks are observed, normal operation can resume after minor repairs. |
| Moderate damage | Significant longitudinal or lateral displacement occurs, normal operation is achievable following emergency repairs. |
| Severe damage | Through cracks develop in the structure, partial operation can be restored with temporary reinforcement. |
| Collapse | Girder collapse or pier failure occurs, resulting in complete functional loss and operational shutdown. |
| Seismic Damage Levels | Intact | Slight Damage | Moderate Damage | Severe Damage | Collapse |
|---|---|---|---|---|---|
| μd | 0 ≤ μd < μcy1 | μcy1 ≤ μd < μcy | μcy ≤ μd < μc4 | μc4 ≤ μd < μcmax | μd ≥ μcmax |
| Seismic Damage Levels | Intact | Slight Damage | Moderate Damage | Severe Damage | Collapse |
|---|---|---|---|---|---|
| μd | 0 ≤ μd < 1 | 1 ≤ μd < 1.132 | 1.132 ≤ μd < 1.893 | 1.893 ≤ μd < 4.893 | μd ≥ 4.893 |
| Seismic Damage Levels | Intact | Slight Damage | Moderate Damage | Severe Damage | Collapse |
|---|---|---|---|---|---|
| d/mm | 0 ≤ d < 25 | 25 ≤ d < 50 | 50 ≤ d < 75 | 75 ≤ d < 90 | d ≥ 90 |
| Direction | A | B | C | D | E | ||
|---|---|---|---|---|---|---|---|
| M ≥ 6.5 | M < 6.5 | M ≥ 6.5 | M < 6.5 | ||||
| Long axis | −0.363 | 1.437 | 0.791 | 0.513 | −2.103 | 2.088 | 0.399 |
| Short axis | −1.147 | 0.712 | 0.788 | 0.502 | −1.825 | 0.944 | 0.447 |
| Seismic Source Zone | M0 | Mu | b | v4.0 |
|---|---|---|---|---|
| Lower Yangtze–South Yellow Sea seismic source zone | 4.0 | 7.5 | 0.85 | 3.0 |
| Tancheng–Lushan seismic source zone | 8.5 | 0.85 | 4.0 | |
| North China Plain seismic source zone | 8.0 | 0.86 | 4.6 |
| No. | Potential Source Zones | Magnitude Classification | ||||||
|---|---|---|---|---|---|---|---|---|
| [4.0, 4.9] | [5.0, 5.4] | [5.5, 5.9] | [6.0, 6.4] | [6.5, 6.9] | [7.0, 7.4] | ≥7.5 | ||
| 31 | Changqing potential seismic source zone | 0.00331 | 0.00744 | 0.00958 | 0 | 0 | 0 | 0 |
| 26 | Zibo potential seismic source zone | 0.00834 | 0.00596 | 0.01421 | 0.02014 | 0 | 0 | 0 |
| 35 | Laiwu potential seismic source zone | 0.00797 | 0.00569 | 0.01254 | 0.02221 | 0 | 0 | 0 |
| 32 | Tai’an potential seismic source zone | 0.00463 | 0.00859 | 0.00979 | 0.01279 | 0 | 0 | 0 |
| 25 | Liaocheng potential seismic source zone | 0.00621 | 0.00896 | 0.01362 | 0.02778 | 0.08013 | 0 | 0 |
| 27 | Linqu potential seismic source zone | 0.00837 | 0.00592 | 0.01412 | 0.02707 | 0.06576 | 0 | 0 |
| 8 | Fanxian potential seismic source zone | 0.00711 | 0.00889 | 0.00963 | 0.02011 | 0.04854 | 0.05853 | 0 |
| 17 | Bozhong No.1 potential seismic source zone | 0.01225 | 0.00855 | 0.02261 | 0.03999 | 0.04926 | 0.22801 | 0.58423 |
| 39 | Tancheng potential seismic source zone | 0.00982 | 0.00671 | 0.01426 | 0.01934 | 0.03212 | 0.14191 | 0.11578 |
| Random Variables | Probability Distribution | Variables Before and After Normalization | Minimum Value | Mean Value | Maximum Value | Standard Deviation | Coefficient of Variation |
|---|---|---|---|---|---|---|---|
| Ec/MPa | Log-normal distribution | ξ1 | 2.99 × 104 | 3.25 × 104 | 3.51 × 104 | 2600 | 0.080 |
| x1 | −1 | 0 | 1 | ||||
| γ | Normal distribution | ξ2 | 0.035 | 0.05 | 0.065 | 0.015 | 0.300 |
| x2 | −1 | 0 | 1 | ||||
| fy/MPa | Log-normal distribution | ξ3 | 372 | 400 | 428 | 28 | 0.070 |
| x3 | −1 | 0 | 1 | ||||
| Es/MPa | Log-normal distribution | ξ4 | 1.94 × 104 | 2.00 × 104 | 2.06 × 104 | 6000 | 0.030 |
| x4 | −1 | 0 | 1 | ||||
| PGA/g | ξ5 | 0.2 | 0.6 | 1.0 | |||
| x5 | −1 | 0 | 1 |
| No. | Earthquake | Year | Station Name | M | R/km | vs30/m·s−1 |
|---|---|---|---|---|---|---|
| 1 | Imperial Valley-04 | 1953 | El Centro Array #9 | 5.50 | 15.11 | 213.44 |
| 2 | Lytle Creek | 1970 | Castaic-Old Ridge Route | 5.33 | 103.23 | 450.28 |
| 3 | Lytle Creek | 1970 | Cedar Springs Pumphouse | 5.33 | 21.33 | 477.22 |
| 4 | Lytle Creek | 1970 | Lake Hughes #1 | 5.33 | 90.25 | 425.34 |
| 5 | Lytle Creek | 1970 | Puddingstone Dam (Abutment) | 5.33 | 29.49 | 421.44 |
| 6 | Lytle Creek | 1970 | Santa Anita Dam | 5.33 | 42.14 | 667.13 |
| 7 | Lytle Creek | 1970 | Wrightwood-6074 Park Dr | 5.33 | 10.70 | 486.00 |
| 8 | San Fernando | 1971 | Cedar Springs Pumphouse | 6.61 | 92.25 | 477.22 |
| 9 | San Fernando” | 1971 | Colton-So Cal Edison | 6.61 | 96.81 | 301.95 |
| 10 | San Fernando | 1971 | Fort Tejon | 6.61 | 59.52 | 394.18 |
| 11 | San Fernando | 1971 | Gormon-Oso Pump Plant | 6.61 | 43.95 | 308.35 |
| 12 | San Fernando | 1971 | Tehachapi Pump | 6.61 | 61.75 | 669.48 |
| 13 | San Fernando | 1971 | Wrightwood-6074 Park Dr | 6.61 | 61.64 | 486.00 |
| 14 | Point Mugu | 1973 | Port Hueneme | 5.65 | 15.48 | 248.98 |
| 15 | Hollister-03 | 1974 | Gilroy Array #1 | 5.14 | 9.99 | 1428.14 |
| No. | x1 | x2 | x3 | x4 | x5 | Bridge Piers | Bearings | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| μd of Side Piers | μd of Middle Piers | d of Side Pier Bearings/mm | d of Middle Pier Bearings/mm | ||||||||||
| Mean Value | Standard Deviation | Mean Value | Standard Deviation | Mean Value | Standard Deviation | Mean Value | Standard Deviation | ||||||
| 1 | −1 | −1 | −1 | −1 | −1 | 0.24 | 0.22 | 0.24 | 0.22 | 27.33 | 25.07 | 26.51 | 24.39 |
| 2 | −1 | −1 | −1 | −1 | 1 | 1.10 | 1.01 | 1.08 | 0.99 | 103.75 | 95.29 | 102.16 | 93.87 |
| 3 | −1 | −1 | −1 | 1 | −1 | 0.22 | 0.20 | 0.22 | 0.20 | 23.97 | 21.95 | 21.55 | 19.80 |
| 4 | −1 | −1 | −1 | 1 | 1 | 1.08 | 0.99 | 1.07 | 0.98 | 99.46 | 91.30 | 98.45 | 90.41 |
| 5 | −1 | −1 | 1 | −1 | −1 | 0.22 | 0.22 | 0.22 | 0.22 | 24.05 | 22.06 | 21.30 | 19.60 |
| 6 | −1 | −1 | 1 | −1 | 1 | 1.08 | 1.00 | 1.06 | 0.98 | 99.87 | 91.73 | 99.33 | 91.27 |
| 7 | −1 | −1 | 1 | 1 | −1 | 0.20 | 0.18 | 0.20 | 0.19 | 19.30 | 17.68 | 18.10 | 16.63 |
| 8 | −1 | −1 | 1 | 1 | 1 | 1.05 | 0.97 | 1.04 | 0.95 | 97.57 | 89.56 | 96.36 | 88.49 |
| 9 | −1 | 1 | −1 | −1 | −1 | 0.20 | 0.19 | 0.20 | 0.19 | 24.33 | 22.29 | 20.94 | 19.24 |
| 10 | −1 | 1 | −1 | −1 | 1 | 1.08 | 0.99 | 1.07 | 0.98 | 100.16 | 91.82 | 99.01 | 90.76 |
| 11 | −1 | 1 | −1 | 1 | −1 | 0.20 | 0.18 | 0.20 | 0.18 | 19.74 | 18.07 | 18.45 | 16.90 |
| 12 | −1 | 1 | −1 | 1 | 1 | 1.06 | 0.97 | 1.03 | 0.95 | 97.89 | 89.66 | 96.43 | 88.35 |
| 13 | −1 | 1 | 1 | −1 | −1 | 0.20 | 0.19 | 0.20 | 0.18 | 20.08 | 18.40 | 17.96 | 16.48 |
| 14 | −1 | 1 | 1 | −1 | 1 | 1.05 | 0.96 | 1.04 | 0.95 | 98.11 | 89.94 | 96.84 | 88.77 |
| 15 | −1 | 1 | 1 | 1 | −1 | 0.18 | 0.17 | 0.18 | 0.17 | 16.52 | 15.10 | 14.82 | 13.58 |
| 16 | −1 | 1 | 1 | 1 | 1 | 1.02 | 0.94 | 0.99 | 0.91 | 94.96 | 86.98 | 94.63 | 86.70 |
| 17 | 1 | −1 | −1 | −1 | −1 | 0.22 | 0.20 | 0.21 | 0.20 | 23.81 | 21.84 | 20.84 | 19.18 |
| 18 | 1 | −1 | −1 | −1 | 1 | 1.08 | 0.99 | 1.07 | 0.98 | 100.33 | 92.15 | 98.87 | 90.85 |
| 19 | 1 | −1 | −1 | 1 | −1 | 0.20 | 0.18 | 0.20 | 0.18 | 20.56 | 18.83 | 17.73 | 16.29 |
| 20 | 1 | −1 | −1 | 1 | 1 | 1.05 | 0.96 | 1.03 | 0.95 | 98.41 | 90.34 | 96.94 | 89.03 |
| 21 | 1 | −1 | 1 | −1 | −1 | 0.20 | 0.18 | 0.20 | 0.19 | 20.06 | 18.40 | 17.81 | 16.39 |
| 22 | 1 | −1 | 1 | −1 | 1 | 1.05 | 0.96 | 1.04 | 0.95 | 98.11 | 90.14 | 96.51 | 88.68 |
| 23 | 1 | −1 | 1 | 1 | −1 | 0.19 | 0.17 | 0.18 | 0.17 | 15.63 | 14.32 | 15.17 | 13.94 |
| 24 | 1 | −1 | 1 | 1 | 1 | 1.00 | 0.92 | 1.00 | 0.92 | 95.46 | 87.63 | 94.52 | 86.80 |
| 25 | 1 | 1 | −1 | −1 | −1 | 0.20 | 0.18 | 0.19 | 0.18 | 20.03 | 18.35 | 17.93 | 16.46 |
| 26 | 1 | 1 | −1 | −1 | 1 | 1.05 | 0.97 | 1.04 | 0.95 | 97.92 | 89.76 | 96.54 | 88.49 |
| 27 | 1 | 1 | −1 | 1 | −1 | 0.20 | 0.18 | 0.19 | 0.18 | 16.17 | 14.78 | 14.30 | 13.09 |
| 28 | 1 | 1 | −1 | 1 | 1 | 1.02 | 0.94 | 1.00 | 0.91 | 95.61 | 87.58 | 93.92 | 86.05 |
| 29 | 1 | 1 | 1 | −1 | −1 | 0.18 | 0.17 | 0.18 | 0.17 | 15.85 | 14.52 | 14.95 | 13.72 |
| 30 | 1 | 1 | 1 | −1 | 1 | 1.02 | 0.93 | 1.00 | 0.92 | 95.10 | 87.18 | 94.31 | 86.45 |
| 31 | 1 | 1 | 1 | 1 | −1 | 0.15 | 0.13 | 0.16 | 0.15 | 11.96 | 10.93 | 11.57 | 10.60 |
| 32 | 1 | 1 | 1 | 1 | 1 | 0.99 | 0.91 | 0.98 | 0.90 | 93.54 | 85.68 | 92.03 | 84.32 |
| 33 | 1 | 0 | 0 | 0 | 0 | 0.65 | 0.59 | 0.64 | 0.59 | 56.09 | 51.46 | 54.89 | 50.38 |
| 34 | −1 | 0 | 0 | 0 | 0 | 0.67 | 0.62 | 0.66 | 0.60 | 57.40 | 52.66 | 55.74 | 51.16 |
| 35 | 0 | 1 | 0 | 0 | 0 | 0.66 | 0.60 | 0.64 | 0.59 | 56.21 | 51.51 | 54.71 | 50.14 |
| 36 | 0 | −1 | 0 | 0 | 0 | 0.67 | 0.61 | 0.66 | 0.60 | 57.59 | 52.87 | 56.12 | 51.56 |
| 37 | 0 | 0 | 1 | 0 | 0 | 0.66 | 0.60 | 0.65 | 0.60 | 56.12 | 51.49 | 54.65 | 50.16 |
| 38 | 0 | 0 | −1 | 0 | 0 | 0.67 | 0.62 | 0.66 | 0.61 | 57.48 | 52.74 | 56.03 | 51.43 |
| 39 | 0 | 0 | 0 | 1 | 0 | 0.66 | 0.60 | 0.65 | 0.60 | 55.96 | 51.31 | 54.47 | 49.97 |
| 40 | 0 | 0 | 0 | −1 | 0 | 0.67 | 0.62 | 0.66 | 0.61 | 57.53 | 52.81 | 56.08 | 51.50 |
| 41 | 0 | 0 | 0 | 0 | 1 | 1.05 | 0.96 | 1.03 | 0.95 | 98.07 | 89.96 | 96.53 | 88.57 |
| 42 | 0 | 0 | 0 | 0 | −1 | 0.20 | 0.18 | 0.20 | 0.19 | 20.13 | 18.44 | 17.92 | 16.46 |
| 43 | 0 | 0 | 0 | 0 | 0 | 0.66 | 0.61 | 0.66 | 0.61 | 56.63 | 51.95 | 55.94 | 51.07 |
| Parameters | Bridge Piers | Bearings | ||||||
|---|---|---|---|---|---|---|---|---|
| μd of Side Piers | μd of Middle Piers | d of Side Pier Bearings/mm | d of Middle Pier Bearings/mm | |||||
| Mean Value | Standard Deviation | Mean Value | Standard Deviation | Mean Value | Standard Deviation | Mean Value | Standard Deviation | |
| R2 | 0.9998 | 0.9998 | 0.9998 | 0.9997 | 0.9998 | 0.9998 | 0.9998 | 0.9998 |
| Ra2 | 0.9997 | 0.9997 | 0.9995 | 0.9995 | 0.9997 | 0.9997 | 0.9997 | 0.9997 |
| PGA/g | P1 of Side Piers | P2 of Side Piers | P3 of Side Piers | P4 of Side Piers | P5 of Side Piers |
|---|---|---|---|---|---|
| 0.00 | 0 | 0 | 0 | 0 | 0 |
| 0.05 | 0 | 0 | 0 | 0 | 0 |
| 0.10 | 0 | 0 | 0 | 0 | 0 |
| 0.15 | 0.0008 | 0 | 0 | 0 | 0 |
| 0.20 | 0.1154 | 0.0003 | 0 | 0 | 0 |
| 0.25 | 0.3887 | 0.1028 | 0.0004 | 0 | 0 |
| 0.30 | 0.6621 | 0.3119 | 0.1017 | 0.0003 | 0 |
| 0.35 | 0.7752 | 0.6144 | 0.2891 | 0.0892 | 0 |
| 0.40 | 0.8821 | 0.7282 | 0.5881 | 0.1778 | 0 |
| 0.45 | 0.9122 | 0.8267 | 0.6892 | 0.2871 | 0 |
| 0.50 | 0.9282 | 0.8861 | 0.7902 | 0.3901 | 0 |
| 0.55 | 0.9428 | 0.9122 | 0.8236 | 0.4578 | 0 |
| 0.60 | 0.9661 | 0.9318 | 0.8618 | 0.5129 | 0 |
| 0.65 | 0.9707 | 0.9459 | 0.8891 | 0.5782 | 0.0004 |
| 0.70 | 0.9788 | 0.9577 | 0.9208 | 0.6278 | 0.0278 |
| 0.75 | 0.9826 | 0.9681 | 0.9418 | 0.6839 | 0.0472 |
| 0.80 | 0.9878 | 0.9781 | 0.9565 | 0.7208 | 0.0987 |
| 0.85 | 0.9918 | 0.9819 | 0.9708 | 0.7677 | 0.132 |
| 0.90 | 0.9926 | 0.9912 | 0.9812 | 0.8001 | 0.197 |
| 0.95 | 0.9938 | 0.9933 | 0.9911 | 0.8219 | 0.277 |
| 1.00 | 0.9968 | 0.9948 | 0.9922 | 0.8302 | 0.329 |
| PGA/g | P1 of Middle Piers | P2 of Middle Piers | P3 of Middle Piers | P4 of Middle Piers | P5 of Middle Piers |
|---|---|---|---|---|---|
| 0.00 | 0 | 0 | 0 | 0 | 0 |
| 0.05 | 0 | 0 | 0 | 0 | 0 |
| 0.10 | 0 | 0 | 0 | 0 | 0 |
| 0.15 | 0.0008 | 0 | 0 | 0 | 0 |
| 0.20 | 0.1108 | 0.0003 | 0 | 0 | 0 |
| 0.25 | 0.3711 | 0.1011 | 0.0004 | 0 | 0 |
| 0.30 | 0.5782 | 0.2881 | 0.1011 | 0.0003 | 0 |
| 0.35 | 0.7231 | 0.6101 | 0.2871 | 0.0873 | 0 |
| 0.40 | 0.8652 | 0.7218 | 0.5822 | 0.1725 | 0 |
| 0.45 | 0.9016 | 0.8211 | 0.6865 | 0.2842 | 0 |
| 0.50 | 0.9188 | 0.8812 | 0.7842 | 0.3881 | 0 |
| 0.55 | 0.9392 | 0.9082 | 0.8202 | 0.4566 | 0 |
| 0.60 | 0.9612 | 0.9288 | 0.8588 | 0.5019 | 0 |
| 0.65 | 0.9684 | 0.9415 | 0.8878 | 0.5725 | 0.0004 |
| 0.70 | 0.9721 | 0.9566 | 0.9181 | 0.6225 | 0.0255 |
| 0.75 | 0.9811 | 0.9623 | 0.9402 | 0.6811 | 0.0461 |
| 0.80 | 0.9821 | 0.9702 | 0.9556 | 0.7188 | 0.0977 |
| 0.85 | 0.9861 | 0.9735 | 0.9661 | 0.7608 | 0.129 |
| 0.90 | 0.9877 | 0.9821 | 0.9772 | 0.7942 | 0.188 |
| 0.95 | 0.9901 | 0.9877 | 0.9812 | 0.8128 | 0.256 |
| 1.00 | 0.9912 | 0.9901 | 0.9892 | 0.8218 | 0.318 |
| PGA/g | P1 of Side Pier Bearings | P2 of Side Pier Bearings | P3 of Side Pier Bearings | P4 of Side Pier Bearings | P5 of Side Pier Bearings |
|---|---|---|---|---|---|
| 0.00 | 0 | 0 | 0 | 0 | 0 |
| 0.05 | 0.0021 | 0 | 0 | 0 | 0 |
| 0.10 | 0.0028 | 0 | 0 | 0 | 0 |
| 0.15 | 0.3122 | 0.0004 | 0 | 0 | 0 |
| 0.20 | 0.6651 | 0.0181 | 0 | 0 | 0 |
| 0.25 | 0.8342 | 0.2118 | 0.0003 | 0 | 0 |
| 0.30 | 0.9028 | 0.5542 | 0.0074 | 0 | 0 |
| 0.35 | 0.9374 | 0.7758 | 0.0618 | 0.0001 | 0 |
| 0.40 | 0.9529 | 0.8869 | 0.2529 | 0.0006 | 0 |
| 0.45 | 0.9708 | 0.9328 | 0.5081 | 0.0038 | 0 |
| 0.50 | 0.9823 | 0.9544 | 0.7118 | 0.0296 | 0.008 |
| 0.55 | 0.9914 | 0.9682 | 0.8215 | 0.1172 | 0.0032 |
| 0.60 | 0.9933 | 0.9732 | 0.8891 | 0.3028 | 0.0129 |
| 0.65 | 0.9951 | 0.9838 | 0.9322 | 0.5182 | 0.0571 |
| 0.70 | 0.9968 | 0.9907 | 0.9588 | 0.7088 | 0.1682 |
| 0.75 | 0.9978 | 0.9958 | 0.9762 | 0.8618 | 0.3822 |
| 0.80 | 0.9987 | 0.9986 | 0.9881 | 0.9442 | 0.6621 |
| 0.85 | 0.9994 | 0.9991 | 0.9916 | 0.9731 | 0.7824 |
| 0.90 | 1 | 0.9999 | 0.9982 | 0.9918 | 0.8627 |
| 0.95 | 1 | 1 | 0.9997 | 0.9926 | 0.9318 |
| 1.00 | 1 | 1 | 1 | 0.9965 | 0.9688 |
| PGA/g | P1 of Middle Pier Bearings | P2 of Middle Pier Bearings | P3 of Middle Pier Bearings | P4 of Middle Pier Bearings | P5 of Middle Pier Bearings |
|---|---|---|---|---|---|
| 0.00 | 0 | 0 | 0 | 0 | 0 |
| 0.05 | 0.0011 | 0 | 0 | 0 | 0 |
| 0.10 | 0.0019 | 0 | 0 | 0 | 0 |
| 0.15 | 0.2871 | 0.0003 | 0 | 0 | 0 |
| 0.20 | 0.6341 | 0.0168 | 0 | 0 | 0 |
| 0.25 | 0.7711 | 0.1475 | 0.0002 | 0 | 0 |
| 0.30 | 0.8574 | 0.4682 | 0.0058 | 0 | 0 |
| 0.35 | 0.8991 | 0.7147 | 0.0521 | 0.0001 | 0 |
| 0.40 | 0.9288 | 0.8318 | 0.2177 | 0.0005 | 0 |
| 0.45 | 0.9481 | 0.8874 | 0.4838 | 0.0021 | 0 |
| 0.50 | 0.9618 | 0.9478 | 0.6688 | 0.0189 | 0.0007 |
| 0.55 | 0.9786 | 0.9608 | 0.8081 | 0.1098 | 0.0025 |
| 0.60 | 0.9824 | 0.9728 | 0.8691 | 0.2575 | 0.0118 |
| 0.65 | 0.9902 | 0.9811 | 0.9219 | 0.4671 | 0.0451 |
| 0.70 | 0.9936 | 0.9901 | 0.9489 | 0.6577 | 0.1287 |
| 0.75 | 0.9974 | 0.9948 | 0.9681 | 0.8429 | 0.2881 |
| 0.80 | 0.9988 | 0.9977 | 0.9779 | 0.9177 | 0.5908 |
| 0.85 | 0.9999 | 0.9991 | 0.9862 | 0.9528 | 0.7521 |
| 0.90 | 1 | 0.9997 | 0.9972 | 0.9762 | 0.8489 |
| 0.95 | 1 | 0.9999 | 0.9995 | 0.9914 | 0.9118 |
| 1.00 | 1 | 1 | 0.9999 | 0.9948 | 0.9337 |
| Exceedance Probability Over 1 Year/% | 0.0404 | 0.2105 | 1.9689 |
|---|---|---|---|
| PGA/g | 0.1747 | 0.1001 | 0.0292 |
| μd,max | 1.000 | 1.132 | 1.893 | 4.893 |
|---|---|---|---|---|
| PGAj- | 0.9238 | 1.0464 | 1.7545 | 4.5566 |
| dmax/mm | 25 | 50 | 75 | 90 |
|---|---|---|---|---|
| PGAj- | 0.3216 | 0.6478 | 0.9756 | 1.1729 |
| Results of Probability Risk Assessment | Bridge Piers | Bearings | |||
|---|---|---|---|---|---|
| Probability of Exceedance Risk/% | Risk Probability/% | Probability of Exceedance Risk/% | Risk Probability/% | ||
| Damage States | Intact | 100.00 | 68.90 | 100.00 | 3.54 |
| Slight damage | 31.10 | 6.22 | 96.46 | 44.11 | |
| Moderate damage | 24.88 | 15.75 | 52.35 | 25.64 | |
| Severe damage | 9.13 | 7.86 | 26.71 | 7.74 | |
| Collapse | 1.27 | 1.27 | 18.97 | 18.97 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yin, C.; Sun, T.; Li, J. Seismic Damage Risk Assessment of Reinforced Concrete Bridges Considering Structural Parameter Uncertainties. Coatings 2025, 15, 1242. https://doi.org/10.3390/coatings15111242
Chen J, Yin C, Sun T, Li J. Seismic Damage Risk Assessment of Reinforced Concrete Bridges Considering Structural Parameter Uncertainties. Coatings. 2025; 15(11):1242. https://doi.org/10.3390/coatings15111242
Chicago/Turabian StyleChen, Jiagu, Chao Yin, Tianqi Sun, and Jiaxu Li. 2025. "Seismic Damage Risk Assessment of Reinforced Concrete Bridges Considering Structural Parameter Uncertainties" Coatings 15, no. 11: 1242. https://doi.org/10.3390/coatings15111242
APA StyleChen, J., Yin, C., Sun, T., & Li, J. (2025). Seismic Damage Risk Assessment of Reinforced Concrete Bridges Considering Structural Parameter Uncertainties. Coatings, 15(11), 1242. https://doi.org/10.3390/coatings15111242
