Impact of Animal-Based Glues on the Surface Characteristics of Traditional Wood-Supported Polychrome Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polychrome Coatings
2.3. Characterization of Animal Glues
2.4. Evaluation Methods
2.4.1. Appearance and Color Evaluation
2.4.2. Gloss Measurement
2.4.3. Surface Roughness and Morphology
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Animal Glues
3.2. Color Characteristics of Polychrome Coatings
3.3. Gloss and Surface Roughness Analysis of Polychrome Coatings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Zhang, B.; Hu, Y. Comparison and research progress of protein detection technology for cultural relic materials. Coatings 2023, 13, 1319. [Google Scholar] [CrossRef]
- Mosleh, Y.; Van Die, M.; Gard, W.; Breebaart, I.; Van de Kuilen, J.W.; Van Duin, P.; Poulis, J.A. Gelatine adhesives from mammalian and fish origins for historical art objects conservation: How do microstructural features determine physical and mechanical properties? J. Cult. Herit. 2023, 63, 52–60. [Google Scholar] [CrossRef]
- Padovnik, A.; Bokan-Bosiljkov, V. The Influence of Animal Glue as an Additive on the Properties of Lime Architectural Grouts. Sustainability 2023, 15, 12903. [Google Scholar] [CrossRef]
- Ntasi, G.; Sbriglia, S.; Pitocchi, R.; Vinciguerra, R.; Melchiorre, C.; Dello Ioio, L.; Fatigati, G.; Crisci, E.; Bonaduce, I.; Carpentieri, A.; et al. Proteomic Characterization of Collagen-Based Animal Glues for Restoration. J. Proteome Res. 2022, 21, 2173–2184. [Google Scholar] [CrossRef]
- Serafini, I.; Ciccola, A.; Curini, R.; Favero, G.; Kavich, G.M.; Cleland, T.P.; Solazzo, C. Revealing the Unknown: How Multi-Technical Approach Can Be Crucial in Identification of Dyes and Protein in Archeological Remains. In Multidisciplinary Approaches for the Investigation of Textiles and Fibres in the Archaeological Field; Springer Nature: Cham, Switzerland, 2024; pp. 71–122. [Google Scholar]
- Vinciguerra, R.; Illiano, A.; De Chiaro, A.; Carpentieri, A.; Lluveras-Tenorio, A.; Bonaduce, I.; Birolo, L. Identification of proteinaceous binders in paintings: A targeted proteomic approach for cultural heritage. Microchem. J. 2019, 144, 319–328. [Google Scholar] [CrossRef]
- Barberis, E.; Manfredi, M.; Ferraris, E.; Bianucci, R. Non-Invasive Paleo-Metabolomics and Paleo-Proteomics Analyses Reveal the Complex Funerary Treatment of the Early 18th Dynasty Dignitary NEBIRI (QV30). Molecules 2022, 27, 7208. [Google Scholar] [CrossRef] [PubMed]
- Touaiti, F.; Pahlevan, M.; Nilsson, R.; Alam, P.; Toivakka, M.; Ansell, M.P.; Wilen, C.E. Impact of Functionalised Dispersing Agents on the Mechanical and Viscoelastic Properties of Pigment Coating. Prog. Org. Coat. 2013, 76, 101–106. [Google Scholar] [CrossRef]
- Schellmann, N.C. Animal glues: A review of their key properties relevant to conservation. Stud. Conserv. 2007, 52 (Suppl. 1), 55–66. [Google Scholar] [CrossRef]
- Pellegrini, D.; Duce, C.; Bonaduce, I.; Biagi, S.; Ghezzi, L.; Colombini, M.P.; Tinè, M.R.; Bramanti, E. Fourier Transform Infrared Spectroscopic Study of Rabbit Glue/Inorganic Pigments Mixtures in Fresh and Aged Reference Paint Reconstructions. Microchem. J. 2016, 124, 31–35. [Google Scholar] [CrossRef]
- Vasiliki, K.; Ioannis, B. Bondability of Black locust (Robinia pseudoacacia) and Beech wood (Fagus sylvatica) with polyvinyl acetate and polyurethane adhesives. Maderas. Ciencia y tecnología 2017, 19, 87–94. [Google Scholar] [CrossRef]
- Kucharska, M.; Jaskowska-Lemanska, J. Active Thermography in Diagnostics of Timber Elements Covered with Polychrome. Materials 2021, 14, 1134. [Google Scholar] [CrossRef]
- Guo, Q. The Mingqi Pottery Buildings of Han Dynasty China, 206 BC–AD 220: Architectural Representations and Represented Architecture; Liverpool University Press: Liverpool, UK, 2016. [Google Scholar]
- Leona, M. East Asian Paintings: Materials, Structures and Deterioration Mechanisms. Stud. Conserv. 2009, 54, 185–187. [Google Scholar] [CrossRef]
- Dallongeville, S.; Koperska, M.; Garnier, N.; Reille-Taillefert, G.; Rolando, C.; Tokarski, C. Identification of Animal Glue Species in Artworks Using Proteomics: Application to a 18th Century Gilt Sample. Anal. Chem. 2011, 83, 9431–9437. [Google Scholar] [CrossRef] [PubMed]
- Marín-Marín, S.C.; López-Martínez, T.; Medina-Flórez, V.J. Adhesion systems in new supports for mural paintings: Reversibility tests. Stud. Conserv. 2025, 70, 251–266. [Google Scholar] [CrossRef]
- Kozowyk, P.R.; Van Gijn, A.L.; Langejans, G.H. Understanding preservation and identification biases of ancient adhesives through experimentation. Archaeol. Anthropol. Sci. 2020, 12, 209. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Andreotti, A.; Talarico, F.; Legnaioli, S.; Olivieri, L.M.; Colombini, M.P.; Pannuzi, S. An insight into Gandharan art: Materials and techniques of polychrome decoration. Heritage 2022, 5, 488–508. [Google Scholar] [CrossRef]
- Liu, W.; Liu, X.; Lv, J. Comparative study on UV degradation of black Chinese lacquers with different additives. Materials 2023, 16, 5607. [Google Scholar] [CrossRef]
- Zou, W.; Yeo, S.Y. Characterization of Animal Protein-Based Binders in Ancient Chinese Wall Paintings Using Atomic Force Microscopy and Fourier Transform Infrared Spectroscopy. Appl. Spectrosc. 2022, 76, 1191–1205. [Google Scholar] [CrossRef]
- Albertini, E.; Raggi, L.; Vagnini, M.; Sassolini, A.; Achilli, A.; Marconi, G.; Cartechini, L.; Veronesi, F.; Falcinelli, M.; Brunetti, B.G.; et al. Tracing the Biological Origin of Animal Glues Used in Paintings through Mitochondrial DNA Analysis. Anal. Bioanal. Chem. 2011, 399, 2987–2995. [Google Scholar] [CrossRef]
- Palmieri, M.; Vagnini, M.; Pitzurra, L.; Brunetti, B.G.; Cartechini, L. Identification of Animal Glue and Hen-Egg Yolk in Paintings by Use of Enzyme-Linked Immunosorbent Assay (ELISA). Anal. Bioanal. Chem. 2013, 405, 6365–6371. [Google Scholar] [CrossRef]
- Kirby, D.P.; Buckley, M.; Promise, E.; Trauger, S.A.; Holdcraft, T.R. Identification of collagen-based materials in cultural heritage. Analyst 2013, 138, 4849–4858. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Feng, N.; Zhang, J.; Zhang, G.; Yang, Y. Development of an automatic conversion method for the conversion of a CIE-XYZ color system to a DIN color system. Color Res. Appl. 2023, 49, 292–305. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Effect of coating process on performance of reversible thermochromic waterborne coatings for Chinese fir. Coatings 2020, 10, 223. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, X.; Zuo, S.; Wang, J. Effect of drying oil on properties of traditional painted coatings. Coatings 2024, 14, 1545. [Google Scholar] [CrossRef]
- Liang, H.; Wu, Z. The role of single landscape elements in enhancing landscape aesthetics and the sustainable tourism experience: A case study of leisure furniture. Sustainability 2024, 16, 10219. [Google Scholar] [CrossRef]
- Yaghubzadeh, H.; Razani, M. A review on characterization, optimization and applications of animal glue. J. Stud. Color World 2022, 11, 1–12. [Google Scholar]
- Ahmed, H.E.; Kolisis, F.N. A study on using of protease for removal of animal glue adhesive in textile conservation. J. Appl. Polym. Sci. 2012, 124, 3565–3576. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta BBA-Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Giuffrida, M.G.; Mazzoli, R.; Pessione, E. Back to the past: Deciphering cultural heritage secrets by protein identification. Appl. Microbiol. Biotechnol. 2018, 102, 5445–5455. [Google Scholar] [CrossRef]
- Avdanina, D.A.; Zhgun, A.A. Rainbow code of biodeterioration to cultural heritage objects. Herit. Sci. 2024, 12, 187. [Google Scholar] [CrossRef]
- Zou, W.; Yeo, S.Y. Characterization of Freeze-Thaw Treatments upon Binders in Ancient Chinese Wall Paintings by X-Ray Diffraction (XRD) and Attenuated Total Reflection–Fourier Transform Infrared (ATR-FTIR) Spectroscopy. Anal. Lett. 2024, 57, 190–201. [Google Scholar] [CrossRef]
- Krizova, I.; Schultz, J.; Nemec, I.; Cabala, R.; Hynek, R.; Kuckova, S. Comparison of Analytical Tools Appropriate for Identification of Proteinaceous Additives in Historical Mortars. Anal. Bioanal. Chem. 2018, 410, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Casoli, A. Research on the organic binders in archaeological wall paintings. Appl. Sci. 2021, 11, 9179. [Google Scholar] [CrossRef]
- Sarkodie, B.; Acheampong, C.; Asinyo, B.; Zhang, X.; Tawiah, B. Characteristics of Pigments, Modification, and Their Functionalities. Color Res. Appl. 2019, 44, 396–410. [Google Scholar] [CrossRef]
- Doni, M.; Fierascu, I.; Fierascu, R.C. Recent Developments in Materials Science for the Conservation and Restoration of Historic Artifacts. Appl. Sci. 2024, 14, 11363. [Google Scholar] [CrossRef]




| Factor | L* | a* | b* | C* |
|---|---|---|---|---|
| Glue Type | ||||
| Bone Glue | 44.47 b ± 0.4 | 47.58 a ± 0.39 | 24.11 a ± 0.31 | 53.36 a ± 0.44 |
| Hide Glue | 43.34 a ± 0.3 | 46.42 a ± 0.36 | 23.99 a ± 0.33 | 52.26 a ± 0.41 |
| Fish Glue | 43.18 a ± 0.40 | 46.39 a ± 0.37 | 24.48 a ± 0.35 | 52.46 a ± 0.42 |
| Concentration | ||||
| 10% | 45.01 c ± 0.45 | 47.87 b ± 0.42 | 25.61 c ± 0.36 | 54.30 c ± 0.52 |
| 15% | 44.22 b ± 0.41 | 46.68 a ± 0.39 | 24.04 b ± 0.35 | 52.51 b ± 0.47 |
| 20% | 41.76 a ± 0.38 | 45.84 a ± 0.37 | 22.92 a ± 0.34 | 51.26 a ± 0.45 |
| p Values | ||||
| Glue Type | 0.002 | 0.090 | 0.367 | 0.162 |
| Concentration | <0.001 | 0.009 | <0.001 | <0.001 |
| Glue Type × Concentration | <0.001 | <0.001 | 0.003 | <0.001 |
| Factor | L* | a* | b* | C* |
|---|---|---|---|---|
| Glue Type | ||||
| Bone Glue | 78.99 a ± 0.52 | 12.97 b ± 0.29 | 67.30 a ± 0.48 | 68.54 a ± 0.50 |
| Hide Glue | 78.42 a ± 0.49 | 12.96 b ± 0.28 | 69.82 b ± 0.50 | 71.02 b ± 0.52 |
| Fish Glue | 79.09 a ± 0.50 | 12.22 a ± 0.27 | 69.19 b ± 0.49 | 70.27 b ± 0.51 |
| Concentration | ||||
| 10% | 81.60 c ± 0.63 | 11.54 a ± 0.26 | 68.10 a ± 0.47 | 69.08 a ± 0.49 |
| 15% | 78.41 b ± 0.55 | 13.37 b ± 0.30 | 70.61 b ± 0.52 | 71.87 b ± 0.54 |
| 20% | 76.49 a ± 0.54 | 13.23 b ± 0.29 | 67.60 a ± 0.46 | 68.89 a ± 0.48 |
| p Values | ||||
| Glue Type | 0.270 | <0.001 | 0.011 | 0.013 |
| Concentration | <0.001 | <0.001 | 0.002 | 0.001 |
| Glue Type × Concentration | 0.002 | <0.001 | <0.001 | <0.001 |
| Factor | L* | a* | b* | C* |
|---|---|---|---|---|
| Glue Type | ||||
| Bone Glue | 46.33 a ± 0.39 | −3.76 b ± 0.21 | −16.02 b ± 0.34 | 16.47 a ± 0.34 |
| Hide Glue | 52.71 b ± 0.42 | −4.27 ab ± 0.23 | −18.01 a ± 0.36 | 18.53 b ± 0.37 |
| Fish Glue | 57.47 c ± 0.41 | −4.49 a ± 0.22 | −16.19 b ± 0.35 | 16.81 a ± 0.36 |
| Concentration | ||||
| 10% | 57.40 c ± 0.47 | −4.14 ab ± 0.23 | −18.10 a ± 0.37 | 18.60 c ± 0.38 |
| 15% | 53.40 b ± 0.44 | −4.67 a ± 0.24 | −17.03 b ± 0.35 | 17.66 b ± 0.36 |
| 20% | 45.17 a ± 0.43 | −3.70 c ± 0.21 | −15.09 c ± 0.33 | 15.55 a ± 0.35 |
| p Values | ||||
| Glue Type | <0.001 | 0.043 | <0.001 | <0.001 |
| Concentration | <0.001 | 0.009 | <0.001 | <0.001 |
| Glue Type × Concentration | 0.007 | 0.027 | <0.001 | <0.001 |
| Factor | Ra | Rq | Rt | GU |
|---|---|---|---|---|
| Glue Type | ||||
| Bone Glue | 1.72 a ± 0.12 | 2.71 a ± 0.18 | 19.02 a ± 1.05 | 3.09 b ± 0.21 |
| Hide Glue | 3.50 c ± 0.25 | 4.99 b ± 0.35 | 28.74 b ± 1.85 | 0.87 a ± 0.08 |
| Fish Glue | 2.77 b ± 0.19 | 4.34 b ± 0.30 | 24.46 b ± 1.52 | 0.92 a ± 0.09 |
| Concentration | ||||
| 10% | 2.41 a ± 0.17 | 3.45 a ± 0.24 | 19.85 a ± 1.21 | 0.90 c ± 0.07 |
| 15% | 2.48 a ± 0.18 | 3.68 a ± 0.26 | 25.13 b ± 1.65 | 1.31 b ± 0.11 |
| 20% | 3.50 b ± 0.24 | 4.90 b ± 0.34 | 27.22 b ± 1.78 | 2.67 c ± 0.19 |
| p Values | ||||
| Glue Type | <0.001 | <0.001 | 0.003 | <0.001 |
| Concentration | <0.001 | 0.017 | 0.017 | <0.001 |
| Glue Type × Concentration | <0.001 | 0.912 | 0.209 | <0.001 |
| Factor | Ra | Rq | Rt | GU |
|---|---|---|---|---|
| Glue Type | ||||
| Bone Glue | 3.57 b ± 0.21 | 5.27 a ± 0.29 | 26.90 a ± 1.45 | 2.16 b ± 0.14 |
| Hide Glue | 3.27 a ± 0.20 | 5.23 a ± 0.28 | 27.02 a ± 1.46 | 2.06 a ± 0.13 |
| Fish Glue | 3.56 b ± 0.21 | 5.70 a ± 0.31 | 29.44 a ± 1.58 | 1.79 b ± 0.12 |
| Concentration | ||||
| 10% | 3.06 a ± 0.18 | 4.61 a ± 0.25 | 22.98 a ± 1.25 | 2.02 b ± 0.13 |
| 15% | 3.85 b ± 0.23 | 6.06 b ± 0.33 | 30.52 b ± 1.64 | 1.86 a ± 0.12 |
| 20% | 3.58 c ± 0.21 | 5.53 a ± 0.30 | 29.86 b ± 1.60 | 2.12 b ± 0.14 |
| p Values | ||||
| Glue Type | 0.020 | 0.572 | 0.356 | <0.001 |
| Concentration | <0.001 | 0.024 | 0.002 | <0.001 |
| Glue Type × Concentration | <0.001 | 0.002 | 0.002 | 0.013 |
| Factor | Ra | Rq | Rt | GU |
|---|---|---|---|---|
| Glue Type | ||||
| Bone Glue | 3.44 a ± 0.21 | 5.24 a ± 0.29 | 28.76 a ± 1.58 | 0.90 a ± 0.06 |
| Hide Glue | 4.17 a ± 0.25 | 6.19 a ± 0.34 | 32.24 a ± 1.77 | 1.00 a ± 0.07 |
| Fish Glue | 3.57 a ± 0.21 | 5.15 a ± 0.28 | 28.72 a ± 1.58 | 0.96 a ± 0.07 |
| Concentration | ||||
| 10% | 4.05 a ± 0.24 | 5.65 a ± 0.31 | 30.03 a ± 1.65 | 1.07 a ± 0.07 |
| 15% | 3.68 a ± 0.22 | 5.71 a ± 0.31 | 29.06 a ± 1.60 | 0.94 b ± 0.06 |
| 20% | 3.46 a ± 0.21 | 5.22 a ± 0.29 | 30.63 a ± 1.68 | 0.84 b ± 0.06 |
| p Values | ||||
| Glue Type | 0.065 | 0.124 | 0.109 | 0.195 |
| Concentration | 0.179 | 0.607 | 0.686 | 0.002 |
| Glue Type × Concentration | 0.057 | 0.095 | 0.020 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, M.; Zuo, S.; Feng, Y.; Liu, X.; Beldean, E.-C.; Chen, Y. Impact of Animal-Based Glues on the Surface Characteristics of Traditional Wood-Supported Polychrome Coatings. Coatings 2025, 15, 1235. https://doi.org/10.3390/coatings15111235
Yan M, Zuo S, Feng Y, Liu X, Beldean E-C, Chen Y. Impact of Animal-Based Glues on the Surface Characteristics of Traditional Wood-Supported Polychrome Coatings. Coatings. 2025; 15(11):1235. https://doi.org/10.3390/coatings15111235
Chicago/Turabian StyleYan, Mengling, Shaojun Zuo, Yueming Feng, Xinyou Liu, Emanuela-Carmen Beldean, and Yushu Chen. 2025. "Impact of Animal-Based Glues on the Surface Characteristics of Traditional Wood-Supported Polychrome Coatings" Coatings 15, no. 11: 1235. https://doi.org/10.3390/coatings15111235
APA StyleYan, M., Zuo, S., Feng, Y., Liu, X., Beldean, E.-C., & Chen, Y. (2025). Impact of Animal-Based Glues on the Surface Characteristics of Traditional Wood-Supported Polychrome Coatings. Coatings, 15(11), 1235. https://doi.org/10.3390/coatings15111235

