Adsorption and Desorption Characteristics of Nano-Metal-Modified Zeolite for Removal of Oxygenated Volatile Organic Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adsorbents
2.3. Characterization Method
2.4. Experiment to Investigate Dynamic Adsorption of OVOCs Using Modified Zeolites
3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. N2 Adsorption–Desorption Isotherms
3.1.2. XRD Pattern
3.1.3. SEM-EDS Spectra
3.1.4. FTIR Spectra
3.2. Gas Adsorption Performance for Ethanol, Acetaldehyde, and Ethyl Acetate
3.3. Effect of Impregnation Concentration
3.4. Effect of Impregnation Time
3.5. Effect of Calcination Temperature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mellouki, A.; Wallington, T.J.; Chen, J. Atmospheric chemistry of oxygenated volatile organic compounds: Impacts on air quality and climate. Chem. Rev. 2015, 115, 3984–4014. [Google Scholar] [CrossRef] [PubMed]
- Miyake, T.; Shibamoto, T. Quantitative analysis of acetaldehyde in foods and beverages. J. Agric. Food Chem. 1993, 41, 1968–1970. [Google Scholar] [CrossRef]
- Thomas, A.; Thirumalaisamy, L.; Madanagurusamy, S.; Sivaperuman, K. Switching the selectivity of ZnO thin films for ultra-sensitive acetaldehyde gas sensors through Co doping. Sens. Actuators B Chem. 2024, 401, 135043. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, Y.; Zhang, Y.; Yang, Y.; Cui, R.; Ren, L.; Zhang, M.; Wang, Y. Highly efficient degradation of ethanol, acetaldehyde, and ethyl acetate removal by bio-trickling filter reactors with various fillers. Process Saf. Environ. Prot. 2024, 191, 1407–1418. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, N.; Han, J.; Liu, C.; Adimi, S.; Wen, S.; Li, X.; Ruan, S. Metal–organic framework derived core–shell PrFeO3-functionalized α-Fe2O3 nano-octahedrons as high performance ethyl acetate sensors. Sens. Actuators B Chem. 2019, 297, 126738. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, D.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Ji, X.; Lan, Q.; Fan, Q. Activated carbon modified by ester hydrolysis of ethyl acetate for water vapor adsorption enhancement. Processes 2022, 10, 1527. [Google Scholar] [CrossRef]
- Gan, G.; Fan, S.; Li, X.; Zhang, Z.; Hao, Z. Adsorption and membrane separation for removal and recovery of volatile organic compounds. J. Environ. Sci. 2023, 123, 96–115. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Guo, L. Enhanced toluene combustion over highly homogeneous iron manganese oxide nanocatalysts. ACS Appl. Nano Mater. 2018, 1, 1066–1075. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, X.; Su, X.; Wang, F.; Liu, Z.; Liu, B.; Zhan, J.; Liu, H.; Sang, Y. Construction of bimetallic Pd–Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs. Chem. Eng. J. 2018, 346, 77–84. [Google Scholar] [CrossRef]
- Kraus, M.; Trommler, U.; Holzer, F.; Kopinke, F.-D.; Roland, U. Competing adsorption of toluene and water on various zeolites. Chem. Eng. J. 2018, 351, 356–363. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Yin, T.; Meng, X.; Wang, S.; Yao, X.; Liu, N.; Shi, L. Study on the adsorption of low-concentration VOCs on zeolite composites based on chemisorption of metal oxides under dry and wet conditions. Sep. Purif. Technol. 2022, 280, 119634. [Google Scholar] [CrossRef]
- Wang, W.; Lin, F.; An, T.; Qiu, S.; Yu, H.; Yan, B.; Chen, G.; Hou, L. Photocatalytic mineralization of indoor VOC mixtures over unique ternary TiO2/C/MnO2 with high adsorption selectivity. Chem. Eng. J. 2021, 425, 131678. [Google Scholar] [CrossRef]
- Siu, B.; Chowdhury, A.R.; Yan, Z.; Humphrey, S.M.; Hutter, T. Selective adsorption of volatile organic compounds in metal–organic frameworks (MOFs). Coord. Chem. Rev. 2023, 485, 215119. [Google Scholar] [CrossRef]
- Rana, A.K.; Mostafavi, E.; Alsanie, W.F.; Siwal, S.S.; Thakur, V.K. Cellulose-based materials for air purification: A review. Ind. Crops Prod. 2023, 194, 116331. [Google Scholar] [CrossRef]
- Shen, X.; Du, X.; Yang, D.; Ran, J.; Yang, Z.; Chen, Y. Influence of physical structures and chemical modification on VOCs/OVOCs adsorption characteristics of molecular sieves. J. Environ. Chem. Eng. 2021, 9, 106729. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, C.; Li, D.; Lei, Y.; Yao, H.; Zhou, G.; Wang, K.; Rao, Y.; Liu, W.; Xu, C.; et al. Micro–mesoporous activated carbon simultaneously possessing large surface area and ultra-high pore volume for efficiently adsorbing various VOCs/OVOCs. Carbon 2020, 170, 567–579. [Google Scholar] [CrossRef]
- Shu, Q.; Sun, Z.; Zhu, G.; Wang, C.; Li, H.; Qi, F.; Zhang, Q.; Li, S. Highly efficient synthesis of ZSM-5 zeolite by one-step microwave using desilication solution of coal gasification coarse slag and its application to VOCs adsorption. Process Saf. Environ. 2022, 167, 173–183. [Google Scholar] [CrossRef]
- Yu, B.; Deng, H.; Lu, Y.; Pan, T.; Shan, W.; He, H. Adsorptive interaction between typical VOCs and various topological zeolites: Mixture effect and mechanism. J. Environ. Sci. 2024, 136, 626–636. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, W.; Li, J.; Liu, W.; Wang, Y.; Chu, W.; Zhang, X.; Xu, L.; Zhu, X.; Li, X. High-silica FAU zeolite through controllable framework modulation for VOCs adsorption under high humidity. Microporous Mesoporous Mater. 2023, 355, 112570. [Google Scholar] [CrossRef]
- Feng, A.; Yu, Y.; Mi, L.; Cao, Y.; Yu, Y.; Song, L. Synthesis and VOCs adsorption performance of surfactant-templated USY zeolites with controllable mesopores. Chem. Phys. Lett. 2022, 798, 139578. [Google Scholar] [CrossRef]
- Goyal, N.; Bulasara, V.K.; Barman, S. Removal of emerging contaminants daidzein and coumestrol from water by nanozeolite beta modified with tetrasubstituted ammonium cation. J. Hazard. Mater. 2018, 344, 417–430. [Google Scholar] [CrossRef]
- Gao, S.; Peng, H.; Song, B.; Zhang, J.; Wu, W.; Vaughan, J.; Zardo, P.; Vogrin, J.; Tulloch, S.; Zhu, Z. Synthesis of zeolites from low-cost feeds and its sustainable environmental applications. J. Environ. Chem. Eng. 2023, 11, 108995. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, M.; Liu, X.; Zhang, Y.; Yuan, X.; Zhang, Z.; Xiong, K.; Zhang, W.; Xu, Q.; Ren, Z.; et al. Tailoring Heteroatom-Doped Porous Carbon Materials for Efficient Adsorption of Volatile Organic Compounds: Fabrication Strategies, Doping Effects, and Adsorption Mechanisms. Coord. Chem. Rev. 2026, 547, 217155. [Google Scholar] [CrossRef]
- Neshati, S.; Hashisho, Z. Enhancing Volatile Organic Compounds (VOC) Adsorption and Electrothermal Regeneration of CuBTC Using Carbonaceous and Metallic Modifiers. Microporous Mesoporous Mater. 2025, 398, 113821. [Google Scholar] [CrossRef]
- Tri, N.L.M.; Thang, P.Q.; Van Tan, L.; Huong, P.T.; Kim, J.; Viet, N.M.; Phuong, N.M.; Al Tahtamouni, T.M. Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. J. Water Process Eng. 2020, 33, 101070. [Google Scholar] [CrossRef]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.-L.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef]
- Guo, Y.; Xiang, B.; Zhao, B.; Wang, W.; Xiang, Y.; Liao, J.; Chang, L.; Ma, J.; Bao, W. Removal of H2S from simulated blast furnace gas by adsorption over metal-modified 13X zeolite. Fuel 2023, 338, 127261. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Mat, R.; Somderam, S.; Abd Aziz, A.S.; Mohamed, A. Hydrogen sulfide adsorption by zinc oxide-impregnated zeolite (synthesized from Malaysian kaolin) for biogas desulfurization. J. Ind. Eng. Chem. 2018, 65, 334–342. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, J.; Huang, C.; Lei, Z.; Chen, B. Adsorptive separation of dimethyl disulfide from liquefied petroleum gas by different zeolites and selectivity study via FT-IR. Sep. Purif. Technol. 2014, 125, 247–255. [Google Scholar] [CrossRef]
- Costa, B. Sol–Gel Synthesis of Iron(III) Oxyhydroxide Nanostructured Monoliths Using Fe(NO3)3 9H2O/CH3CH2OH/NH4OH Ternary System. J. Phys. Chem. Solids 2011, 72, 678–684. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, X.; Liu, J.; Zhang, L. Phosphorus removal from wastewater using nano-particulates of hydrated ferric oxide doped activated carbon fiber prepared by Sol–Gel method. Chem. Eng. J. 2012, 200–202, 619–626. [Google Scholar] [CrossRef]
- Li, W.; Yang, Z.; Meng, Q.; Shen, C.; Zhang, G. Thermally stable and solvent resistant self-crosslinked TiO2/PAN hybrid hollow fiber membrane fabricated by mutual supporting method. J. Membr. Sci. 2014, 467, 253–261. [Google Scholar] [CrossRef]
- Huang, N.; Xie, Y.; Sebo, B.; Liu, Y.; Sun, X.; Peng, T.; Sun, W.; Bu, C.; Guo, S.; Zhao, X. Morphology transformations in tetrabutyl titanate–acetic acid system and sub-micron/micron hierarchical TiO2 for dye-sensitized solar cells. J. Power Sources 2013, 242, 848–854. [Google Scholar] [CrossRef]
- Lv, Y.; Qian, X.; Tu, B.; Zhao, D. Generalized synthesis of core–shell structured nano-zeolite@ordered mesoporous silica composites. Catal. Today 2013, 204, 2–7. [Google Scholar] [CrossRef]
- Fudala, A.S.; Salih, W.M.; Alkazaz, F.F. Synthesis of different sizes of cerium oxide CeO2 nanoparticles by using different concentrations of precursor via sol-gel method. Mater. Today 2022, 49, 2786–2792. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, J.; Dong, L.; Huang, M.; Li, B.; Jin, G.; Gao, J.; Zhang, F.; Fan, M.; Zhang, L.; et al. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite. Sci. Rep. 2016, 6, 23382. [Google Scholar] [CrossRef]
- Sun, M.; Ku, C.; Tao, Z.; Wang, T.; Wen, C.; Hanif, A.; Wang, C.; Gu, Q.; Sit, P.; Shang, J. Ambient temperature NO2 removal by adsorption on transition metal ion-exchanged chabazite zeolites. Results Eng. 2023, 18, 101134. [Google Scholar] [CrossRef]
- Obayomi, K.S.; Lau, S.Y.; Ibrahim, O.; Zhang, J.; Meunier, L.; Aniobi, M.M.; Atunwa, B.T.; Pramanik, B.K.; Rahman, M.M. Removal of Congo red dye from aqueous environment by zinc terephthalate metal–organic framework decorated on silver nanoparticles-loaded biochar: Mechanistic insights of adsorption. Microporous Mesoporous Mater. 2023, 355, 112568. [Google Scholar] [CrossRef]
- Yang, K.; Xue, F.; Sun, Q.; Yue, R.; Lin, D. Adsorption of Volatile Organic Compounds by Metal-Organic Frameworks MOF-177. J. Environ. Chem. Eng. 2013, 1, 713–718. [Google Scholar] [CrossRef]
- Wang, Q.; Li, T.; Tian, H.; Zou, D.; Zeng, J.; Chen, S.; Xie, H.; Zhou, G. Effect of Pore Size Distribution of Biomass Activated Carbon Adsorbents on the Adsorption Capacity. J. Chem. Technol. Biotechnol. 2024, 99, 1148–1156. [Google Scholar] [CrossRef]
- El Khawaja, R.; Sonar, S.; Barakat, T.; Heymans, N.; Su, B.-L.; Löfberg, A.; Lamonier, J.-F.; Giraudon, J.-M.; De Weireld, G.; Poupin, C.; et al. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catal. Today 2022, 405–406, 212–220. [Google Scholar] [CrossRef]
- Zhu, M.; An, X.; Gui, T.; Wu, T.; Li, Y.; Chen, X. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane. Chin. J. Chem. Eng. 2023, 59, 176–181. [Google Scholar] [CrossRef]
- He, S.; Wang, S.; Fan, S.; Luo, L.; Yuan, K.; Qin, Z.; Dong, M.; Wang, J.; Fan, W. Improvement of the catalytic performance of ITQ-13 zeolite in methanol to olefins via Ce modification. Catal. Today 2023, 410, 184–192. [Google Scholar] [CrossRef]
- Jakubowski, M.; Kucinska, M.; Ratajczak, M.; Pokora, M.; Murias, M.; Voelkel, A.; Sandomierski, M. Zinc Forms of Faujasite Zeolites as a Drug Delivery System for 6-Mercaptopurine. Microporous Mesoporous Mater. 2022, 343, 112194. [Google Scholar] [CrossRef]
- Jena, K.K.; Suresh Kumar Reddy, K.; Karanikolos, G.N.; Choi, D.S. L-Cysteine and Silver Nitrate Based Metal Sulfide and Zeolite-Y Nano Adsorbent for Efficient Removal of Mercury (II) Ion from Wastewater. Appl. Surf. Sci. 2023, 611, 155777. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, Y.; Long, Y.; Chen, Z.; Cui, P.; Wu, R.; Chang, X. VOCs reduction in bitumen binder with optimally designed Ca(OH)2-incorporated zeolite. Constr. Build. Mater. 2021, 279, 122485. [Google Scholar] [CrossRef]
- Lacinska, A.; Rushton, J.; Burgess, S.; Deady, E.A.; Turner, G. The effect of X-ray energy overlaps on the microanalysis of chevkinite (Ce, La, Ca, Th)4(Fe2+, Mg)2 (Ti, Fe3+)3Si4O22 using SEM EDS-WDS. Minerals 2021, 11, 1063. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Huang, G.; Deng, H.; Zhang, X. Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega 2023, 8, 17064–17076. [Google Scholar] [CrossRef] [PubMed]
- Noor, P.; Khanmohammadi, M.; Roozbehani, B.; Yaripour, F.; Bagheri Garmarudi, A. Introduction of table sugar as a soft second template in ZSM-5 nanocatalyst and its effect on product distribution and catalyst lifetime in methanol to gasoline conversion. J. Energy Chem. 2018, 27, 582–590. [Google Scholar] [CrossRef]
- Pan, F.; Lu, X.; Wang, Y.; Chen, S.; Wang, T.; Yan, Y. Organic template-free synthesis of ZSM-5 zeolite from coal-series kaolinite. Mater. Lett. 2014, 115, 5–8. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.; Yi, H.; Yu, Q.; Zhang, Y.; Wei, J.; Yuan, Y. Synthesis, Characterization and Application of Fe-Zeolite: A Review. Appl. Catal. A Gen. 2022, 630, 118467. [Google Scholar] [CrossRef]
- Crocellà, V.; Cerrato, G.; Magnacca, G.; Morterra, C. Adsorption of Acetone on Nonporous and Mesoporous Silica. J. Phys. Chem. C 2009, 113, 16517–16529. [Google Scholar] [CrossRef]
- Lee, S.-W.; Park, H.-J.; Lee, S.-H.; Lee, M.-G. Comparison of Adsorption Characteristics According to Polarity Difference of Acetone Vapor and Toluene Vapor on Silica–Alumina Fixed-Bed Reactor. J. Ind. Eng. Chem. 2008, 14, 10–17. [Google Scholar] [CrossRef]
- Van Donk, S.; Janssen, A.H.; Bitter, J.H.; Jong, K.P. Generation, characterization and impact of mesopores in zeolite catalysts. Catal. Rev. 2003, 45, 297–319. [Google Scholar] [CrossRef]
- Christensen, C.; Johannsen, K.; Tornqvist, E.; Schmidt, I.; Topsøe, H.; Christensen, C.H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catal. Today 2007, 128, 117–122. [Google Scholar] [CrossRef]
- Hemmer, K.; Bühler, R.; Elsner, M.; Cokoja, M.; Fischer, R.A. Stereo-controlled cyclopropanation catalysis within the confined pores of porphyrin MOFs. Catal. Sci. Technol. 2023, 13, 4574–4584. [Google Scholar] [CrossRef]
- Park, J.H.; Sin, K.S.; Chang, S.; Park, S.H.; Cho, S.J. Structural analysis of Cu/zeolite with controlled Si/Al ratio and the resulting thermal stability. Catal. Today 2023, 411–412, 113866. [Google Scholar] [CrossRef]
- Liu, Y.; Tao, H.; Yang, X.; Wu, X.; Li, J.; Zhang, C.; Yang, R.T.; Li, Z. Adsorptive purification of NOx by HZSM-5 zeolites: Effects of Si/Al ratio, temperature, humidity, and gas composition. Microporous Mesoporous Mater. 2023, 348, 112301. [Google Scholar] [CrossRef]
- Urković, L.; Cerjan-Stefanović, Š.; Filipan, T. Metal ion exchange by natural and modified zeolites. Water Res. 1997, 31, 1379–1382. [Google Scholar] [CrossRef]
- Cheng, H.; Reinhard, M. Sorption and inhibited dehydrohalogenation of 2,2-dichloropropane in micropores of dealuminated Y zeolites. Environ. Sci. Technol. 2007, 41, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.H.; Mun, S.; Lee, K.B. Development of modified zeolite for adsorption of mixed sulfur compounds in natural gas by combination of ion exchange and impregnation. Appl. Surf. Sci. 2023, 619, 156634. [Google Scholar] [CrossRef]
- Kim, T.; Park, T.; Son, C.; Lim, S. Improvement of SiO2 surface morphology during the selective Si3N4 etching in the multi-layered 3D NAND Si3N4/SiO2 stack structures by the generation of CO2 gas through the control of redox reaction. Surf. Interfaces 2022, 35, 102484. [Google Scholar] [CrossRef]
- Liu, H.; Wei, K.; Long, C. Enhancing adsorption capacities of low-concentration VOCs under humid conditions using NaY@meso-SiO2 core–shell composite. Chem. Eng. J. 2022, 442, 136108. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, X.; Zheng, S.; Sun, Z.; Liu, S.; Li, H. Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite. Powder Technol. 2015, 274, 88–97. [Google Scholar] [CrossRef]
- Nikolov, A.; Nugteren, H.; Rostovsky, I. Optimization of geopolymers based on natural zeolite clinoptilolite by calcination and use of aluminate activators. Constr. Build. Mater. 2020, 243, 118257. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Song, P.; Ji, J.; Wang, Q. Metal–organic frameworks-derived In2O3 microtubes/Ti3C2Tx MXene composites for NH3 detection at room temperature. Sens. Actuators B Chem. 2022, 361, 131755. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Z.; Du, L.; Yang, L.; Chen, X.; He, H. Effects of calcination temperature on characterization and photocatalytic activity of La2Ti2O7 supported on HZSM-5 zeolite. J. Alloys Compd. 2017, 695, 3541–3546. [Google Scholar] [CrossRef]
- Barzegari, F.; Kazemeini, M.; Rezaei, M.; Farhadi, F.; Keshavarz, A.R. Syngas production through CO2 reforming of propane over highly active and stable mesoporous NiO-MgO-SiO2 catalysts: Effect of calcination temperature. Fuel 2022, 322, 124211. [Google Scholar] [CrossRef]
- Yu, Q.; Li, J.; Liu, W.; Wang, Y.; Chu, W.; Zhang, X.; Xu, L.; Zhu, X.; Li, X. Rational design of a novel silica-based material with abundant open micropores for efficient VOC removal. Chem. Eng. J. 2023, 454, 140077. [Google Scholar] [CrossRef]
- Pan, Y.; Bai, Y.; Chen, C.; Yao, S.; Tian, Q.; Zhang, H. Effect of calcination temperature on geopolymer for the adsorption of cesium. Mater. Lett. 2023, 330, 133355. [Google Scholar] [CrossRef]
Adsorbent | BET Surface Area S.A. (m2/g) | Total Pore Volume (cm3/g) | Mean Pore Diameter (nm) |
---|---|---|---|
Zeolite | 315 | 0.21 | 1.93 |
Fe-zeolite | 363 | 0.25 | 2.79 |
Ti-zeolite | 430 | 0.21 | 1.96 |
Si-zeolite | 439 | 0.27 | 1.95 |
Ce-zeolite | 406 | 0.20 | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Jiang, H.; Wei, W.; Zhang, Z.; Wang, X.; Zhang, M.; Ren, L. Adsorption and Desorption Characteristics of Nano-Metal-Modified Zeolite for Removal of Oxygenated Volatile Organic Compounds. Coatings 2025, 15, 1206. https://doi.org/10.3390/coatings15101206
Wang Y, Jiang H, Wei W, Zhang Z, Wang X, Zhang M, Ren L. Adsorption and Desorption Characteristics of Nano-Metal-Modified Zeolite for Removal of Oxygenated Volatile Organic Compounds. Coatings. 2025; 15(10):1206. https://doi.org/10.3390/coatings15101206
Chicago/Turabian StyleWang, Yue, Hairong Jiang, Wenhui Wei, Zhengao Zhang, Xiaowei Wang, Minglu Zhang, and Lianhai Ren. 2025. "Adsorption and Desorption Characteristics of Nano-Metal-Modified Zeolite for Removal of Oxygenated Volatile Organic Compounds" Coatings 15, no. 10: 1206. https://doi.org/10.3390/coatings15101206
APA StyleWang, Y., Jiang, H., Wei, W., Zhang, Z., Wang, X., Zhang, M., & Ren, L. (2025). Adsorption and Desorption Characteristics of Nano-Metal-Modified Zeolite for Removal of Oxygenated Volatile Organic Compounds. Coatings, 15(10), 1206. https://doi.org/10.3390/coatings15101206