Effects of Substrates on the Performance of Pt Thin-Film Resistance Temperature Detectors
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Aleo, F.P.; Stalder, R.; Prasser, H.-M. Design and development of resistive temperature detector arrays on aluminium substrates. Measurements in mixing experiments. Flow Meas. Instrum. 2015, 45, 176–187. [Google Scholar] [CrossRef]
- Shao, L.; Zhao, X.; Gu, S.; Ma, Y.; Liu, Y.; Deng, X.; Jiang, H.; Zhang, W. Pt thin-film resistance temperature detector on flexible Hastelloy tapes. Vacuum 2021, 184, 109966. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Shin, Y.; Yoon, Y. A study on the fabrication of an RTD (resistance temperature detector) by using Pt thin film. Korean J. Chem. Eng. 2001, 18, 61–66. [Google Scholar] [CrossRef]
- Shen, A.; Kim, S.B.; Bailey, C.; Ma, A.W.; Dardona, S. Direct write fabrication of platinum-based thick-film resistive temperature detectors. IEEE Sens. J. 2018, 18, 9105–9111. [Google Scholar] [CrossRef]
- Tiggelaar, R.M.; Sanders, R.G.P.; Groenland, A.W.; Gardeniers, J.G.E. Stability of thin platinum films implemented in high-temperature microdevices. Sens. Actuators A Phys. 2009, 152, 39–47. [Google Scholar] [CrossRef]
- Moser, Y.; Gijs, M.A.M. Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 2007, 16, 1349–1354. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, G.B. Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation. J. Micromech. Microeng. 2003, 13, 620–627. [Google Scholar] [CrossRef]
- Oh, C.; Stovall, C.B.; Dhaouadi, W.; Carpick, R.W.; de Boer, M.P. The strong effect on MEMS switch reliability of film deposition conditions and electrode geometry. Microelectron. Reliab. 2019, 98, 131–143. [Google Scholar] [CrossRef]
- Zribi, A.; Barthès, M.; Bégot, S.; Lanzetta, F.; Rauch, J.Y.; Moutarlier, V. Design, fabrication and characterization of thin film resistances for heat flux sensing application. Sens. Actuators A Phys. 2016, 245, 26–39. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, G.; Zhao, F.; Wu, C.; Xu, L.; Zhang, Y.; Wu, W.; Lin, Y.; He, G.; Chen, Q. Metal-based sandwich type thick-film platinum resistance temperature detector for in-situ temperature monitoring of hot-end components. Appl. Surf. Sci. 2023, 637, 157979. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Y.; Shi, W.; Cheng, W.; Huang, R.; Zhong, R.; Zeng, Z.; Fan, Y.; Zhang, B. Role of micro-nano fabrication process on the temperature coefficient of resistance of platinum thin films resistance temperature detector. Mater. Lett. 2022, 309, 131313. [Google Scholar] [CrossRef]
- Han, J.; Cheng, P.; Wang, H.; Zhang, C.; Zhang, J.; Wang, Y.; Duan, L.; Ding, G. MEMS-based Pt film temperature sensor on an alumina substrate. Mater. Lett. 2014, 125, 224–226. [Google Scholar] [CrossRef]
- Resnik, D.; Kovač, J.; Vrtačnik, D.; Godec, M.; Pečar, B.; Možek, M. Microstructural and electrical properties of heat treated resistive Ti/Pt thin layers. Thin Solid Films. 2017, 639, 64–72. [Google Scholar] [CrossRef]
- Mailly, F.; Giani, A.; Bonnot, R.; Temple-Boyer, P.; Pascal-Delannoy, F.; Foucaran, A.; Boyer, A. Anemometer with hot platinum thin film. Sens. Actuators A Phys. 2001, 94, 32–38. [Google Scholar] [CrossRef]
- Jiao, R.; Wang, K.; Xin, Y.; Sun, H.; Gong, J.; Yu, L.; Wang, Y. Enhancing the temperature coefficient of resistance of Pt thin film resistance-temperature-detector by short-time annealing. Ceram. Int. 2023, 49, 12596–12603. [Google Scholar] [CrossRef]
- Grosser, M.; Schmid, U. The impact of annealing temperature and time on the electrical performance of Ti/Pt thin films. Appl. Surf. Sci. 2010, 256, 4564–4569. [Google Scholar] [CrossRef]
- Çiftyürek, E.; Sabolsky, K.; Sabolsky, E.M. Platinum thin film electrodes for high-temperature chemical sensor applications. Sens. Actuators B Chem. 2013, 181, 702–714. [Google Scholar] [CrossRef]
- Weng, S.; Qiao, L.; Wang, P. Thermal stability of Pt-Ti bilayer films annealing in vacuum and ambient atmosphere. Appl. Surf. Sci. 2018, 444, 721–728. [Google Scholar] [CrossRef]
- Kim, N.H.; Na, D.M.; Ko, P.J.; Park, J.S.; Lee, W.S. Electrical and thermal properties of platinum thin films prepared by DC magnetron sputtering for Micro-Heater of microsensor applications after CMP process. Solid State Phenomena 2007, 124, 267–270. [Google Scholar] [CrossRef]
- Schössler, T.; Schön, F.; Lemier, C.; Urban, G. Effect of high temperature annealing on resistivity and temperature coefficient of resistance of sputtered platinum thin films of SiO2/Pt/SiOx interfaces. Thin Solid Films 2020, 698, 137877. [Google Scholar] [CrossRef]
- Bernhardt, G.; Silvestre, C.; LeCursi, N.; Moulzolf, S.C.; Frankel, D.J.; Lad, R.J. Performance of Zr and Ti adhesion layers for bonding of platinum metallization to sapphire substrates. Sens. Actuators B Chem. 2001, 77, 368–374. [Google Scholar] [CrossRef]
- Fricke, S.; Friedberger, A.; Seidel, H.; Schmid, U. A robust pressure sensor for harsh environmental applications. Sens. Actuators A Phys. 2012, 184, 16–21. [Google Scholar] [CrossRef]
- Chen, W.; Wang, P.; Cui, Q.; Qiang, Z.; Qiao, L.; Li, Q. Effect of titanium adhesion layer on the thermal stability of platinum films during vacuum high temperature treatment. Vacuum 2024, 226, 113295. [Google Scholar] [CrossRef]
- Lin, X.; Zhang, C.; Yang, S.; Guo, W.; Zhang, Y.; Yang, Z.; Ding, G. The impact of thermal annealing on the temperature dependent resistance behavior of Pt thin films sputtered on Si and Al2O3 substrates. Thin Solid Films 2019, 685, 372–378. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, F.; Gu, N. A non-invasive and high precision sensor for in-situ temperature monitoring of cells. J. Micromech. Microeng. 2022, 32, 095001. [Google Scholar] [CrossRef]
- Manoj, K.; Vijay, S.; Jaspreet, S.; Ashok, S.B.; Alok, J.; Singh, A.S.P.; Surinder, S. Experimental study of chromium oxide thin films as an intermediate layer for Pt-based temperature sensor applications. J. Mater. Sci. Mater. Electron. 2022, 33, 21287–21296. [Google Scholar]
- Zhao, X.; Gao, W.; Yin, J.; Fan, W.; Wang, Z.; Hu, K.; Mai, Y.; Luan, A.; Xu, B.; Jin, Q. A high-precision thermometry microfluidic chip for real-time monitoring of the physiological process of live tumour cells. Talanta 2021, 226, 122101. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Choi, K.S.; Yang, H.J.; Ryu, M.S.; Chae, J.S.; Chang, S.P. Optimizing the response time of Ni-based resistive temperature detectors. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 025002. [Google Scholar] [CrossRef]
- Seungwon, K.; Soomook, L.; Hee, J.M.; Wonjoon, K.; Seunghyun, B.; Won, S.J. Flexible thermocouple using a thermoelectric graphene fiber with a seamless junction. J. Mater. Sci. Technol. 2024, 172, 15–22. [Google Scholar]
- Zeng, Q.; Sun, B.; Xu, J.; Deng, X.; Xu, J.; Jia, Y. Development of NiCr/NiSi Thin-Film Thermocouple Sensor for Workpiece Temperature Measurement in Chemical Explosive Material Machining. J. Manuf. Sci. Eng. 2006, 128, 175–179. [Google Scholar] [CrossRef]
- Juyeon, K.; Dinh, D.H.; Il, R.J. Preparation and characterization of electrospun fluorescent fiber mats as temperature sensors using various polymers. Polym. Test. 2023, 122, 108019. [Google Scholar]
- Sanjay, P.S.; Shrutidhara, S. High-performance flexible temperature sensor from hybrid nanocomposite for continuous human body temperature monitoring. Polym. Compos. 2022, 44, 1381–1391. [Google Scholar]
- Liu, Z.; Tian, B.; Jiang, Z.; Li, S.; Lei, J.; Zhang, Z.; Liu, J.; Shi, P.; Lin, Q. Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °C. Int. J. Extrem. Manuf. 2023, 5, 015601. [Google Scholar] [CrossRef]
Substrates of RTDs | TCR(10−3/K) | Reference |
---|---|---|
Alumina | 2.400 | [12] |
Si/SiO2/Si4N3/ SiO2 | 2.810 | [20] |
Si and Al2O3 ceramics | <3.200 | [24] |
Flexible hastelloy tapes | 2.790 | [2] |
Glass (b270) | 2.800 | [25] |
Silicon | 2.885 | [26] |
Glass | 2.090 | [27] |
Polyimide (PI) | 2.700 | This work |
Silica | 3.200 | This work |
LaAlO3 single crystal | 3.400 | This work |
Substrates of Pt Thin Film RTD | Silica | PI | LAO |
---|---|---|---|
Resistance at 80 K (Ω) | 83 | 143 | 33 |
Slope (Ω/K) | 0.99 | 0.98 | 0.45 |
TCR (10−3/K) | 3.2 | 2.7 | 3.4 |
Materials | Categories | Response Time (ms) | References |
---|---|---|---|
Ti/Pt/Ti thin film | RTD | 80 | [6] |
Ni/Cr thin film | RTD | 7500 | [28] |
Graphene | TC | 240 | [29] |
Indium oxide and indium tin oxide | TC | 4–5 | [33] |
NiCr/NiSi thin film | TC | 0.8 | [30] |
Polymer fluorescent fiber | FOTS | 240,000 | [31] |
MWCNT-Ag-PVDF | RTD | 11,000 | [32] |
Pt/Ti thin film on LAO | RTD | 0.68 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jiao, R.; Sun, C.; Wang, Y. Effects of Substrates on the Performance of Pt Thin-Film Resistance Temperature Detectors. Coatings 2024, 14, 969. https://doi.org/10.3390/coatings14080969
Liu D, Jiao R, Sun C, Wang Y. Effects of Substrates on the Performance of Pt Thin-Film Resistance Temperature Detectors. Coatings. 2024; 14(8):969. https://doi.org/10.3390/coatings14080969
Chicago/Turabian StyleLiu, Dingjia, Ruina Jiao, Chunshui Sun, and Yong Wang. 2024. "Effects of Substrates on the Performance of Pt Thin-Film Resistance Temperature Detectors" Coatings 14, no. 8: 969. https://doi.org/10.3390/coatings14080969
APA StyleLiu, D., Jiao, R., Sun, C., & Wang, Y. (2024). Effects of Substrates on the Performance of Pt Thin-Film Resistance Temperature Detectors. Coatings, 14(8), 969. https://doi.org/10.3390/coatings14080969