Synthesis of Flower-like Crystal Nickel–Cobalt Sulfide and Its Supercapacitor Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Experimental Scheme
2.2. Performance Analysis of 3D Flower-like Nickel–Cobalt Sulfide
2.2.1. Characterization of Physical Properties of Flower-like Crystal Nickel–Cobalt Sulfide
2.2.2. Electrochemical Performance Test of Flower-Shaped Crystal Nickel–Cobalt Sulfide
- (1)
- Cyclic voltammetry (CV)
- (2)
- Constant current charge–discharge test (GCD)
3. Results and Discussion
3.1. Structural Characterization
3.2. SEM Micro-Morphology and TEM Ultra-Micro-Morphology
3.3. Electrochemical Performance Analysis
3.4. Electrochemical Performance of NiCo2S4//AC ASC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suo, N.; Dou, Z.; Cui, L. Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting. Electrochim. Acta 2021, 368, 137602. [Google Scholar] [CrossRef]
- Hou, P.; Yang, Y.Y.; Li, H.Q. Study of Energy Storage System Model Selection and Simulation Based on Supercapacitor. Comput. Simul. 2022, 39, 148–152+159. [Google Scholar]
- Yin, Y.; Fang, Z.; Chen, J.; Peng, Y.; Zhu, L.; Wang, C. Hybrid li-ion capacitor operated within an all-climate temperature range from −60 to +55 °C. ACS Appl. Mater. Interfaces 2021, 13, 45630–45638. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, Y.; Chen, Y.; Hu, X.; Zhu, L.; Chen, H.; Han, S. One-step synthesis of nickel cobalt sulfide nanostructure for high-performance supercapacitor. Mater. Sci. 2019, 54, 11936–11950. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, P.; Liu, C. Synthesis of hierarchical bimetallic sulfide NiCo2S4 for high-performance supercapacitors. Colloids Surf. A 2021, 616, 126334. [Google Scholar] [CrossRef]
- Aadil, M.; Nazik, G.; Zulfiqar, S.; Shakir, I.; Aboud MF, A.; Agboola, P.O.; Warsi, M.F. Fabrication of nickel foam supported cu-doped Co3O4 nanostructures for electrochemical energy storage applications. Ceram. Int. 2021, 47, 9225–9233. [Google Scholar] [CrossRef]
- Pinthurat, W.; Hredzak, B. Fully decentralized control strategy for heterogeneous energy storage systems distributed in islanded dc datacentre microgrid. Energy 2021, 231, 120914. [Google Scholar] [CrossRef]
- Yan, F.; Yan, L.; Wei, X.; Han, Y.; Huang, H.; Xu, S. Structure-design and synthesis of nickel-cobalt oxide/sulfide/phosphide composite nanowire arrays for efficient overall water splitting. Int. J. Hydrogen Energy 2022, 47, 10616–10627. [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Lan, M.; Yang, S.; Xie, Q.; Xiao, J. Cation modulation of cobalt sulfide supported by mesopore-rich hydrangea-like carbon nanoflower for oxygen electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 18683–18692. [Google Scholar] [CrossRef]
- Hekmat, F.; Ezzati, M.; Shahrokhian, S.; Unalan, H.E. Microwave-assisted decoration of cotton fabrics with nickel-cobalt sulfide as a wearable glucose sensing platform. J. Electroanal. Chem. 2021, 890, 115244. [Google Scholar] [CrossRef]
- Pourshahmir, M.; Ghasemi, S.; Hosseini, S.R. Nickel-cobalt layered double hydroxide/NiCo2S4/g-C3N4 nanohybrid for high performance asymmetric supercapacitor. Int. J. Hydrogen Energy 2023, 48, 8127–8143. [Google Scholar] [CrossRef]
- Rehman, M.U.; Manan, A.; Khan, M.A.; Uzair, M.; Qazi, I.; Iqbal, Y. Improved energy storage performance of Bi(Mg0.5Ti0.5)O3 modified Ba0.55Sr0.45TiO3 lead-free ceramics for pulsed power capacitors. J. Eur. Ceram. Soc. 2023, 43, 2426–2441. [Google Scholar] [CrossRef]
- Choi, J.; Nkhama, A.; Kumar, A.; Mishra, S.R.; Perez, F.; Gupta, R.K. A facile preparation of sulfur doped nickel–iron nanostructures with improved her and supercapacitor performance. Int. J. Hydrogen Energy 2022, 47, 7511–7521. [Google Scholar] [CrossRef]
- Nakate, U.T.; Patil, P.; Nakate, Y.T.; Na, S.I.; Hahn, Y.B. Ultrathin ternary metal oxide bi2moo6 nanosheets for high performance asymmetric supercapacitor and gas sensor applications. Appl. Surf. Sci. 2021, 551, 149422. [Google Scholar] [CrossRef]
- Zhong, W.; Sun, H.; Pan, J.; Zhang, Y.; Cheng, X. Hierarchical porous tio2/carbide-derived carbon for asymmetric supercapacitor with enhanced electrochemical performance. Mater. Sci. Semicond. Process. 2021, 127, 105715. [Google Scholar] [CrossRef]
- Cai, Y.; Kang, H.; Jiang, F.; Xu, L.; Xu, Q. The construction of hierarchical pedot@mos2 nanocomposite for high-performance supercapacitor. Appl. Surf. Sci. 2021, 546, 149088. [Google Scholar] [CrossRef]
- Song, Y.; Su, Z.; Zhao, Z.; Lin, S.; Wang, D. A new as3mo8v4/pani/rgo composite for high performance supercapacitor electrode–sciencedirect. Ceram. Int. 2021, 47, 21367–21372. [Google Scholar] [CrossRef]
- Wang, G.; Yi, F.; Zhong, J.; Gao, A.; Liu, C.; Li, Q. Towards high-performance supercapacitor electrodes via achieving 3D cross-network and favorable surface chemistry. ACS Appl. Mater. Interfaces 2022, 14, 34637–34648. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Lei, X.; Chen, H.; Fan, K.; Wang, D.; Gao, Y. Conductive hydrogels with 2D/2D β-NiS/Ti3C2Tx heterostructure for high-performance supercapacitor electrode materials. Ceram. Int. 2022, 48, 1382–1393. [Google Scholar] [CrossRef]
- Tiwari, N.; Kadam, S.; Kulkarni, S. Synthesis and characterization of ZnCO2O4 electrode for high-performance supercapacitor application. Mater. Lett. 2021, 298, 130039. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wang, S.; Wang, K.; Chen, Z.; Xu, Q. Facilely constructing 3D porous NiCo2S4 nanonetworks for high-performance supercapacitors. New J. Chem. 2014, 38, 4045–4048. [Google Scholar] [CrossRef]
- Lu, F.; Zhou, M.; Li, W.; Weng, Q.; Li, C.; Xue, Y.; Golberg, D. Engineering sulfur vacancies and impurities in NiCo2S4 nanostructures toward optimal supercapacitive performance. Nano Energy 2016, 26, 313–323. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, A.; Wang, X.; Tian, C.; An, R.; Fu, H. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 17905–17914. [Google Scholar] [CrossRef]
- Liu, T.; Zheng, Y.; Zhao, W.; Cui, L.; Liu, J. Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J. Colloid Interface Sci. 2019, 556, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, Y.; Qian, Y.; Jin, H.; Tang, X.; Huang, Z.; Lou, L.; Zhang, Q.; Lei, Y.; Wang, S. Hierarchical design of cross-linked NiCo2S4 nanowires bridged NiCo-hydrocarbonate polyhedrons for high-performance asymmetric supercapacitor. Adv. Funct. Mater. 2023, 33, 2210238. [Google Scholar] [CrossRef]
- Barik, R.; Ingole, P.P. Challenges and prospects of metal sulfide materials for supercapacitors. Curr. Opin. Electrochem. 2020, 21, 327–334. [Google Scholar] [CrossRef]
- Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L.; Li, Q.; Wang, T. Hierarchical mushroom-like CoNi2S4 arrays as a novel electrode material for supercapacitors. Nano Energy 2014, 3, 36–45. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, T.; Chen, X.; Wu, D. Agar-based porous electrode and electrolyte for flexible symmetric supercapacitors with ultrahigh energy density. J. Power Sources 2021, 507, 230252. [Google Scholar] [CrossRef]
- Yu, X.; Wang, M.; Gagnoud, A.; Fautrelle, Y.; Ren, Z.; Li, X. Formation of highly porous NiCo2S4 discs with enhanced pseudocapacitive properties through sequential ion-exchange. Mater. Des. 2018, 145, 135–143. [Google Scholar] [CrossRef]
- Xiang, G.; Meng, Y.; Qu, G.; Yin, J.; Teng, B.; Wei, Q.; Xu, X. Dual-functional NiCo2S4 polyhedral architecture with superior electrochemical performance for supercapacitors and lithium-ion batteries. Sci. Bull. 2020, 65, 443–451. [Google Scholar] [CrossRef]
- Sahoo, M.K.; Rao, G. Fabrication of NiCo2S4 nanoball embedded nitrogen doped mesoporous carbon on nickel foam as an advanced charge storage material. Electrochim. Acta 2018, 268, 139–149. [Google Scholar] [CrossRef]
- Xuan, H.; Guan, Y.; Han, X.; Liang, X.; Xie, Z.; Han, P.; Wu, Y. Hierarchical MnCo-LDH/rGO@ NiCo2S4 heterostructures on Ni foam with enhanced electrochemical properties for battery-supercapacitors. Electrochim. Acta 2020, 335, 135691. [Google Scholar] [CrossRef]
- Long, Y.W.; Zeng, H.Y.; Li, H.B.; Zou, K.M.; Xu, S.; Cao, X.J. Sulfidation of CoAl-layered double hydroxide on Ni foam for high-performance supercapacitors. Electrochim. Acta 2020, 361, 137098. [Google Scholar] [CrossRef]
- Cai, D.; Wang, D.; Wang, C.; Liu, B.; Wang, L.; Liu, Y.; Wang, T. Construction of desirable NiCo2S4 nanotube arrays on nickel foamsubstrate for pseudocapacitors with enhanced performance. Electrochim. Acta 2015, 151, 35–41. [Google Scholar] [CrossRef]
- Jia, S.; Wei, J.; Gong, B.; Shao, Z. Sulfur vacancies enriched Nickel-Cobalt sulfides hollow spheres with high performance for All-Solid-State hybrid supercapacitor. J. Colloid Interface Sci. 2021, 601, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Anil Kumar, Y.; Yadav, A.A.; Al-Asbahi, B.A.; Kang, S.W.; Moniruzzaman, M. Sulfur Nanoparticle-Decorated Nickel Cobalt Sulfide Hetero-Nanostructures with Enhanced Energy Storage for High-Performance Supercapacitors. Molecules 2022, 27, 7458. [Google Scholar] [CrossRef]
- Miao, P.; He, J.; Sang, Z.; Zhang, F.; Guo, J.; Su, D.; Ji, H. Hydrothermal growth of 3D graphene on nickel foam as a substrate of nickel-cobalt-sulfur for high-performance supercapacitors. J. Alloys Compd. 2018, 732, 613–623. [Google Scholar] [CrossRef]
- Poompiew, N.; Pattananuwat, P.; Potiyaraj, P. In situ hydrothermal synthesis of nickel cobalt sulfide nanoparticles embedded on nitrogen and sulfur dual doped graphene for a high performance supercapacitor electrode. RSC Adv. 2021, 11, 25057–25067. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, J.; Wang, D.; Sun, J.; Zhang, L.; Liu, Y.; Cui, Y. Urchin-like NiCo2S4 structures synthesized through a one-step solvothermal process for high-performance supercapacitors. Particuology 2019, 45, 66–73. [Google Scholar] [CrossRef]
- Liu, B.L.; Ma, Y.X.; Wang, J.W.; Kang, X.Y.; He, L.J.; Lei, L.; Ran, F. Fabrication of nickel cobalt bimetallic sulfide doped graphite carbon nanohybrids as electrode materials for supercapacitors. Diam. Relat. Mater. 2022, 124, 108955. [Google Scholar] [CrossRef]
- Dong, M.; Wang, Z.; Wang, J.; Guo, H.; Li, X.; Yan, G. Controlled Synthesis of NixCoyS4/rGO Composites for Constructing High-Performance Asymmetric Supercapacitor. Front. Mater. 2019, 6, 176. [Google Scholar] [CrossRef]
Material | Morphology | Specific Capacitance | Cycling Performance | Energy Density | Ref. |
---|---|---|---|---|---|
CoNi2S4 | mushroom | 5.71 F/g at 20 mA/cm2 | 80.9% after 3000 cycles | --- | [27] |
NiCo2S4 | nanotube arrays | 15.58 F/cm at 10 mA/cm2 | 79.3% after 2000 cycles | --- | [34] |
r-NiCo2S4 | hollow spheres | 763.5 C/g at 1 A/g | 91.40% after 5000 cycles | 50.76 Wh/kg at 800 W/kg | [35] |
NiCo2S4 | sheet-like | 971 F/g at 2 A/g | 88.7% after 3500 cycles | --- | [36] |
NF/G/Ni-Co-S | flower-like nanosheets | 2526 F/g at 2 A/g | 77.0% after 2000 cycles | --- | [37] |
NiCo2S4 | nanoparticles | 630.6 F/g at 1 A/g | 110% after 10,000 cycles | 19.35 Wh/kg at 235.0 W/kg | [38] |
NiCo2S4 | sea-urchin-like | 1334 F/g at 0.5 A/g | 91.9% after 2000 cycles | 37.32 Wh/kg at 317.8 W/kg | [39] |
NiCo2S4 | nanoparticles | 742.9 C/g at 1 A/g | 83.78% after 5000 cycles | 53.00 Wh/kg at 850 W/kg | [40] |
Ni1.64Co2.40S4/rGO | 1089 F/g at 1 A/g | 92.6% after 10,000 cycles | 30.4 Wh/kg at 10 KW/kg | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Shen, D.; Zhang, R.; Zhao, S. Synthesis of Flower-like Crystal Nickel–Cobalt Sulfide and Its Supercapacitor Performance. Coatings 2024, 14, 564. https://doi.org/10.3390/coatings14050564
Yu H, Shen D, Zhang R, Zhao S. Synthesis of Flower-like Crystal Nickel–Cobalt Sulfide and Its Supercapacitor Performance. Coatings. 2024; 14(5):564. https://doi.org/10.3390/coatings14050564
Chicago/Turabian StyleYu, Haoran, Ding Shen, Ran Zhang, and Shiyu Zhao. 2024. "Synthesis of Flower-like Crystal Nickel–Cobalt Sulfide and Its Supercapacitor Performance" Coatings 14, no. 5: 564. https://doi.org/10.3390/coatings14050564
APA StyleYu, H., Shen, D., Zhang, R., & Zhao, S. (2024). Synthesis of Flower-like Crystal Nickel–Cobalt Sulfide and Its Supercapacitor Performance. Coatings, 14(5), 564. https://doi.org/10.3390/coatings14050564