Effect of Graphite Powder Addition on Microstructure and Room Temperature Mechanical Properties of Ti-45Al-8Nb Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructures
3.2. Mechanical Properties
4. Conclusions
- (1)
- The addition of graphite powder leads to an increase in the volume fraction of the Ti2AlC phase and intergranular γ-phase in the Ti-45Al-8Nb-xC alloy and a decrease in the length–diameter ratio of the Ti2AlC phase. The addition of graphite powder can refine the grains, reduce the lamellar spacing, and improve the hardness of the alloy.
- (2)
- The compressive strength and strain of the Ti-45Al-8Nb-xC alloys exhibit an increasing and then decreasing trend with the addition of graphite powder. When the content of graphite powder is 0.6 mass%, the alloy exhibits a maximum compressive strength and strain of 1652 MPa and 22.2%, respectively. Compared with the Ti-45Al-8Nb alloy without graphite powder, the improvement is approximately 37.7% and 62.1%, respectively.
- (3)
- The tribological properties of TiAl alloys can be significantly enhanced by the in situ formation of Ti2AlC with the addition of graphite powder. The reduction in the coefficient of friction and wear rate is 18% and 46%, respectively, when graphite powder is added at 0.9 mass%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kothari, K.; Radhakrishnan, R.; Wereley, N.M. Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 2012, 55, 1–16. [Google Scholar] [CrossRef]
- Dong, D.; Liu, L.; Zhu, D.D.; Liu, Y.; Wang, Y.; Wang, X.H.; Wei, Z.J. Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure. Appl. Sci. 2020, 10, 5394. [Google Scholar] [CrossRef]
- Jaffery, S.H.I.; Mativenga, P.T. Wear mechanisms analysis for turning Ti-6Al-4V—Towards the development of suitable tool coatings. Int. J. Adv. Manuf. Technol. 2012, 58, 479–493. [Google Scholar] [CrossRef]
- Zhu, D.D.; Liu, L.; Dong, D.; Wang, X.H.; Liu, Y.; Chen, Z.; Wei, Z.J. Microstructure and compression behavior of in-situ synthesized Ti2AlC reinforced Ti-48Al-2Cr alloy with carbon nanotubes addition. J. Alloy. Comp. 2021, 862, 158646. [Google Scholar] [CrossRef]
- Wang, H.J.; Liu, Z.Q.; Liang, J.H.; Wei, W.; Yin, G.L. Effect of Vanadium Layer on Microstructure and Properties of TC4 (Ti-6Al-4V)/TiAl (Ti-48Al-2Cr-2Nb) Dissimilar Metals Produced by Laser Additive Manufacturing. Coatings 2023, 13, 1638. [Google Scholar] [CrossRef]
- Zhu, D.D.; Yan, J.F.; Jin, Y.L.; Dong, D.; Wang, X.H.; Ma, T.F. Pressure-induced excellent corrosion resistance of Ti-45Al-8Nb alloy. Mater. Lett. 2023, 335, 135446. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, R.R.; Gong, X.; Guo, J.J.; Su, Y.Q.; Ding, H.S.; Fu, H.Z. Microstructure, mechanical properties, and crack propagation behavior in high-Nb TiAl alloys by directional solidification. Metall. Mater. Trans. A. 2018, 49, 4555–4564. [Google Scholar] [CrossRef]
- Song, X.J.; Cui, H.Z.; Han, Y.; Hou, N.; Wei, N.; Ding, L.; Song, Q. Effect of carbon reactant on microstructures and mechanical properties of TiAl/Ti2AlC composites. Mater. Sci. Eng. A. 2017, 684, 406–412. [Google Scholar] [CrossRef]
- Lin, Z.J.; Zhuo, M.J.; Zhou, Y.C.; Li, M.S.; Wang, J.Y. Microstructural characterization of layered ternary Ti2AlC. Acta Mater. 2006, 54, 1009–1015. [Google Scholar] [CrossRef]
- Mei, H. Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites. Compos. Sci. Technol. 2008, 68, 3285–3292. [Google Scholar] [CrossRef]
- Tan, Y.M.; Chen, R.R.; Fang, H.Z.; Liu, Y.L.; Ding, H.S.; Su, Y.Q.; Fu, H.Z. Microstructure evolution and mechanical properties of TiAl binary alloys added with SiC fibers. Intermetallics 2018, 98, 69–78. [Google Scholar] [CrossRef]
- Wang, Y.P.; Ma, T.F.; Li, L.; Liu, C.Z.; Zhang, Y.S.; Zhou, L. The influence of micro-nano Ti2AlC on the hot deformation behavior of TiAl alloys. Intermetallics 2022, 149, 107676. [Google Scholar] [CrossRef]
- Shen, Y.Y.; Jia, Q.; Zhang, X.; Liu, R.H.; Wang, Y.M.; Cui, Y.Y.; Yang, R. Tensile behavior of SiC fiber-reinforced γ-TiAl composites prepared by suction casting. Acta Metall. Sin. 2021, 34, 932–942. [Google Scholar] [CrossRef]
- Lu, X.F.; Li, J.B.; Chen, X.H. Grinding mechanism and mechanical properties of the in-situ synthesized Al2O3/TiAl composites. Ceram. Int. 2019, 45, 12113–12121. [Google Scholar] [CrossRef]
- Wang, L.; Yang, D.S.; Chen, J.; Tan, H.; Zhu, S.Y.; Cheng, J. High-temperature tribological behaviors of in situ–formed TiAl-TiB2 composites in low-pressure oxygen. Tribol. Trans. 2021, 64, 864–872. [Google Scholar] [CrossRef]
- Gao, B.; Peng, H.; Liang, Y.; Lin, J.; Chen, B. Electron beam melted TiC/high Nb–TiAl nanocomposite: Microstructure and mechanical property. Mater. Sci. Eng. A. 2021, 811, 141059. [Google Scholar] [CrossRef]
- Wu, H.; Leng, J.F.; Teng, X.Y.; Fan, G.H.; Geng, L.; Liu, Z.H. Strain partitioning behavior of in situ Ti5Si3/TiAl composites. J. Alloy. Comp. 2018, 744, 182–186. [Google Scholar] [CrossRef]
- Liu, P.; Hou, B.; Wang, A.Q.; Xie, J.P.; Wang, Z.B. Balancing the strength and ductility of Ti2AlC/TiAl composite with a bioinspired micro-nano laminated architecture. Mater. Des. 2022, 220, 110851. [Google Scholar] [CrossRef]
- Song, X.J.; Cui, H.Z.; Han, Y.; Ding, L.; Song, Q. Ti2Al (C, N) solid solution reinforcing TiAl based composites: Evolution of a core-shell structure, interfaces, and mechanical properties. ACS Appl. Mater. Interfaces. 2018, 10, 16783–16792. [Google Scholar] [CrossRef]
- Sokol, M.; Natu, V.; Kota, S.; Barsoum, M.W. Barsoum. On the chemical diversity of the MAX phases. Trends. Chem. 2019, 1, 210–223. [Google Scholar] [CrossRef]
- Shu, S.L.; Qiu, F.; Lü, S.J.; Jin, S.B.; Jiang, Q.C. Phase transitions and compression properties of Ti2AlC/TiAl composites fabricated by combustion synthesis reaction. Mater. Sci. Eng. A. 2012, 539, 344–348. [Google Scholar] [CrossRef]
- Fang, H.Z.; Wang, S.; Chen, R.R.; Xu, Q.; Yan, Y.D.; Su, Y.Q.; Guo, J.J. The effects of the formation of a multi-scale reinforcing phase on the microstructure evolution and mechanical properties of a Ti2AlC/TiAl alloy. Nanoscale 2021, 13, 12565–12576. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.L.; Kou, S.Q.; Dai, J.N.; Wang, Z.F.; Shu, S.L.; Zhang, S.; Qiu, F.; Jiang, Q.C. Microstructural configuration and compressive deformation behavior of a TiAl composite reinforced by Mn and in situ Ti2AlC particles. Mater. Sci. Eng. A. 2021, 823, 141772. [Google Scholar] [CrossRef]
- Armands, L.; Ernests, J.; Janis, L.; Karlis, K.; Irina, B.; Uldis, K.; Vladimirs, K.; Oskars, L. Tribological and Micromechanical Properties of the Nanostructured Carbonitride/Nitride Coatings of Transition Metals Alloyed by Hf and Nb. Appl. Sci. 2023, 13, 522. [Google Scholar] [CrossRef]
- Cheng, J.; Li, F.; Fu, L.C.; Qiao, Z.H.; Yang, J.; Liu, W.M. Dry-sliding tribological properties of TiAl/Ti2AlC composites. Tribol. Lett. 2014, 53, 457–467. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, R.; Zhang, T.B.; Zhang, F.; Kou, H.C.; Li, J.S. Understanding the role of carbon atoms on microstructure and phase transformation of high Nb containing TiAl alloys. Mater. Charact. 2017, 124, 1–7. [Google Scholar] [CrossRef]
- Fang, H.Z.; Chen, R.R.; Yang, Y.; Su, Y.Q.; Ding, H.S.; Guo, J.J. Effects of tantalum on microstructure evolution and mechanical properties of high-Nb TiAl alloys reinforced by Ti2AlC. Research 2019, 2019, 5143179. [Google Scholar] [CrossRef]
- Clemens, H.; Wallgram, W.; Kremmer, S.; Güther, V.; Otto, A.; Bartels, A. Design of novel β-solidifying TiAl alloys with adjustable β/B2-Phase fraction and excellent hot-workability. Adv. Eng. Mater. 2008, 10, 707–713. [Google Scholar] [CrossRef]
- Park, H.S.; Hwang, S.K.; Lee, C.M.; Yoo, Y.C.; Nam, S.W.; Kim, N.J. Microstructural refinement and mechanical properties improvement of elemental powder metallurgy processed Ti-46.6Al-1.4Mn-2Mo alloy by carbon addition. Metall. Mate. Trans. A. 2001, 32, 251–259. [Google Scholar] [CrossRef]
- Guo, X.L.; Wang, L.Q.; Wang, M.M.; Qin, J.N.; Zhang, D.; Lu, W.J. Effects of degree of deformation on the microstructure, me-chanical properties and texture of hybrid-reinforced titanium matrix composites. Acta Mater. 2012, 60, 2656–2667. [Google Scholar] [CrossRef]
- Nandihall, N.; Mori, T.; Kleinke, H. Effect of addition of SiC and Al2O3 refractories on Kapitza resistance of antimonide-telluride. AIP Adv. 2018, 8, 095009. [Google Scholar] [CrossRef]
- Wang, D.Q.; Sun, D.L.; Han, X.L.; Wang, Q.; Zhang, N.B. Investigation on Tribological Behavior of Ti2AlN/TiAl Composite at Room and Elevated Temperature. Tribol. Lett. 2018, 66, 52. [Google Scholar] [CrossRef]
- Ma, T.F.; Li, Q.Y.; Wang, Y.P.; Wang, X.H.; Dong, D.; Zhu, D.D. Microstructure and mechanical properties of micro-nano Ti2AlC-reinforced TiAl composites. Intermetallics 2022, 146, 107563. [Google Scholar] [CrossRef]
- Fang, H.Z.; Chen, R.R.; Chen, X.Y.; Yang, Y.; Su, Y.Q.; Ding, H.S.; Guo, J.J. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys. Intermetallics 2019, 104, 43–51. [Google Scholar] [CrossRef]
Position | C | Al | Nb | Ti |
---|---|---|---|---|
A | 37.75 | 4.07 | 4.87 | 53.31 |
B | 21.2 | 26.6 | 5.54 | 46.66 |
Content/Mass% | LC/μm | LS/μm |
---|---|---|
0 | 257.6 | 332.8 |
0.3 | 66.9 | 272.6 |
0.6 | 44.4 | 152.1 |
0.9 | 38.1 | 269.3 |
Content/Mass% | Phase Volume Fraction/vol.% | Length–Diameter Ratio/vol.% |
---|---|---|
0.3 | 1.6 | 35 |
0.6 | 5.3 | 12.6 |
0.9 | 12.2 | 4.8 |
Content/Mass% | Nominal Yield Strength/MPa | Compressive Strength/MPa | Compressive Strian/% |
---|---|---|---|
0 | 1036 | 1200 | 13.7 |
0.3 | 1088 | 1332 | 14.6 |
0.6 | 1205 | 1652 | 22.2 |
0.9 | 955 | 1524 | 21.5 |
Content/Mass% | Friction Coefficient | Wear Rates/10−4 mm3·N−1·m−1 |
---|---|---|
0 | 0.289 | 5.062 |
0.3 | 0.250 | 2.77 |
0.6 | 0.231 | 2.40 |
0.9 | 0.237 | 2.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Jin, Y.; Chen, X.; Yang, X. Effect of Graphite Powder Addition on Microstructure and Room Temperature Mechanical Properties of Ti-45Al-8Nb Alloys. Coatings 2024, 14, 21. https://doi.org/10.3390/coatings14010021
Wang S, Jin Y, Chen X, Yang X. Effect of Graphite Powder Addition on Microstructure and Room Temperature Mechanical Properties of Ti-45Al-8Nb Alloys. Coatings. 2024; 14(1):21. https://doi.org/10.3390/coatings14010021
Chicago/Turabian StyleWang, Sheng, Yuliang Jin, Xiguo Chen, and Xiaohong Yang. 2024. "Effect of Graphite Powder Addition on Microstructure and Room Temperature Mechanical Properties of Ti-45Al-8Nb Alloys" Coatings 14, no. 1: 21. https://doi.org/10.3390/coatings14010021
APA StyleWang, S., Jin, Y., Chen, X., & Yang, X. (2024). Effect of Graphite Powder Addition on Microstructure and Room Temperature Mechanical Properties of Ti-45Al-8Nb Alloys. Coatings, 14(1), 21. https://doi.org/10.3390/coatings14010021