The Effect of a Coating on the Crystallization of Multicomponent Co-Based Amorphous Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Thermal Characteristics of the as-Quenched Alloys
3.2. Crystallization of Initial Samples after Quenching
3.3. Crystallization of Deformed Samples
3.4. Crystallization of Samples with a Protective Coating
- -
- At the initial stage of crystallization of amorphous alloys of the Co-(Si)-B system alloyed with Fe and Nb, nanocrystals of a metastable phase with a bcc lattice were formed, the parameters of which depended on the composition of the alloy;
- -
- Preliminary deformation before crystallization contributed to a rise in the proportion of the nanocrystalline phase, while its lattice parameter remained unchanged;
- -
- The proportion of the nanocrystalline phase in samples with a protective coating was higher than in samples without a coating.
- -
- The coating of amorphous alloys with a crystalline layer proposed in [55], indeed, allow for maintaining the free volume in the amorphous phase,
- -
- The free volume introduced during the deformation of an amorphous alloy helps to accelerate the process of nanocrystallization.
4. Conclusions
- -
- The activation energies of the first crystallization stage of both alloys were determined. The activation energy of crystallization of Co56B20Fe16Nb8 alloy is higher than that of Co67Si12B9Fe7Nb5 alloy.
- -
- The nanocrystals of a metastable bcc phase were formed in the amorphous alloy at the first crystallization stage.
- -
- The proportion of the formed nanocrystalline phase depended on the degree of deformation. After the completion of the first crystallization stage, the fraction of the nanocrystalline phase in the pre-deformed Co67Si12B9Fe7Nb5 alloy (deformation degree of 20%) was ~1.4 times higher than in the undeformed alloy.
- -
- The proportion of the crystalline phase in the samples with a protective Ta coating was higher than in the samples without a coating. The formed crystals in the deformed samples were smaller, and in the deformed samples with a protective Ta coating, they were slightly larger than in the corresponding initial alloys.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uriarte, J.L.; Yavari, A.R.; Suriñach, S.; Rizzi, P.; Heunen, G.; Baricco, M.; Baró, M.D.; Kvick, A. Properties of FeNiB-Based Metallic Glasses with Primary BCC and FCC Crystallisation Products. J. Magn. Magn. Mater. 2003, 254–255, 532–534. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Inoue, A.; Masumoto, T. Increase in Mechanical Strength of Al-Y-Ni Amorphous Alloys by Dispersion of Nanoscale Fcc-Al Particles. Mater. Trans. JIM 1991, 32, 331–338. [Google Scholar] [CrossRef]
- Gao, M.C.; Guo, F.; Poon, S.J.; Shiflet, G.J. Development of Fcc-Al Nanocrystals in Al–Ni–Gd Metallic Glasses during Continuous Heating DSC Scan. Mater. Sci. Eng. A 2008, 485, 532–543. [Google Scholar] [CrossRef]
- Anghelus, A.; Avettand-Fènoël, M.-N.; Cordier, C.; Taillard, R. Thermal Crystallization of an Al 88 Ni 6 Sm 6 Metallic Glass. J. Alloys Compd. 2015, 651, 454–464. [Google Scholar] [CrossRef]
- Abadlia, L.; Daoudi, M.I.; Alleg, S. Crystallization Process, Microstructure, Thermal Behavior, and Magnetic Properties of Melt-Spun Fe86Cr6P6C2 Ribbons. Appl. Phys. A 2023, 129, 487. [Google Scholar] [CrossRef]
- Luo, Y.; Ke, H.; Zeng, R.; Liu, X.; Luo, J.; Zhang, P. Crystallization Behavior of Zr60Cu20Fe10Al10 Amorphous Alloy. J. Non. Cryst. Solids 2020, 528, 119728. [Google Scholar] [CrossRef]
- Kovács, Z.; Henits, P.; Zhilyaev, A.P.; Révész, Á. Deformation Induced Primary Crystallization in a Thermally Non-Primary Crystallizing Amorphous Al85Ce8Ni5Co2 Alloy. Scr. Mater. 2006, 54, 1733–1737. [Google Scholar] [CrossRef]
- Lu, X.; Feng, S.; Li, L.; Zhang, Y.; Wang, X.; Li, Z.; Wang, L. Severe Deformation-Induced Microstructural Heterogeneities in Cu64 Zr36 Metallic Glass. Model. Simul. Mat. Sci. Eng. 2022, 30, 065005. [Google Scholar] [CrossRef]
- Stoica, M.; Das, J.; Bednarcik, J.; Franz, H.; Mattern, N.; Wang, W.H.; Eckert, J. Strain Distribution in Zr64.13Cu15.75Ni10.12Al10 Bulk Metallic Glass Investigated by in Situ Tensile Tests under Synchrotron Radiation. J. Appl. Phys. 2008, 104, 013522. [Google Scholar] [CrossRef]
- Boucharat, N.; Hebert, R.; Rösner, H.; Valiev, R.; Wilde, G. Nanocrystallization of Amorphous Al88Y7Fe5 Alloy Induced by Plastic Deformation. Scr. Mater. 2005, 53, 823–828. [Google Scholar] [CrossRef]
- Kovács, Z.; Henits, P.; Hóbor, S.; Révész, Á. Nanocrystallization Process in Amorphous Alloys during Severe Plastic Deformation and Thermal Treatments. Rev. Adv. Mater. Sci. 2008, 18, 593–596. [Google Scholar]
- Kim, J.-J.; Choi, Y.; Suresh, S.; Argon, A.S. Nanocrystallization During Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature. Science 2002, 295, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Boucharat, N.; Hebert, R.; Rösner, H.; Valiev, R.Z.; Wilde, G. Synthesis Routes for Controlling the Microstructure in Nanostructured Al88Y7Fe5 Alloys. J. Alloys Compd. 2007, 434–435, 252–254. [Google Scholar] [CrossRef]
- Chang, H.J.; Kim, D.H.; Kim, Y.M.; Kim, Y.J.; Chattopadhyay, K. On the Origin of Nanocrystals in the Shear Band in a Quasicrystal Forming Bulk Metallic Glass Ti40Zr29Cu9Ni8Be14. Scr. Mater. 2006, 55, 509–512. [Google Scholar] [CrossRef]
- Gunderov, D.; Astanin, V. Influence of HPT Deformation on the Structure and Properties of Amorphous Alloys. Metals 2020, 10, 415. [Google Scholar] [CrossRef]
- Hebert, R.J.; Perepezko, J.H. Effect of Intense Rolling and Folding on the Phase Stability of Amorphous Al-Y-Fe Alloys. Metall. Mater. Trans. A 2008, 39, 1804–1811. [Google Scholar] [CrossRef]
- Henits, P.; Révész, Á.; Zhilyaev, A.P.; Kovács, Z. Severe Plastic Deformation Induced Nanocrystallization of Melt-Spun Al85Y8Ni5Co2 Amorphous Alloy. J. Alloys Compd. 2008, 461, 195–199. [Google Scholar] [CrossRef]
- Yavari, A.R.; Georgarakis, K.; Antonowicz, J.; Stoica, M.; Nishiyama, N.; Vaughan, G.; Chen, M.; Pons, M. Crystallization during Bending of a Pd-Based Metallic Glass Detected by X-Ray Microscopy. Phys. Rev. Lett. 2012, 109, 085501. [Google Scholar] [CrossRef]
- Ogawa, Y.; Nunogaki, K.; Endo, S.; Kiritani, M.; Fujita, F.F. Crystallization of Amorphous Fe-B Alloys under Pressure. In Proceedings of the Fourth International Conference on Rapidly Quenched Metals, Sendai, Japan, 24–28 August 1981; pp. 675–678. [Google Scholar]
- Khan, Y.; Sostarich, M. Dynamic Temperature X-ray Diffraction Analysis of the Amorphous Fe80B20 Alloy. Int. J. Mater. Res. 1981, 72, 266–268. [Google Scholar] [CrossRef]
- Kulik, T. Nanocrystallization of Metallic Glasses. J. Non. Cryst. Solids 2001, 287, 145–161. [Google Scholar] [CrossRef]
- Zaluska, A.; Zaluski, L.; Witek, A. Application of Scanning Tunneling Microscopy for Crystallization Studies of Metallic Glasses. Mater. Sci. Eng. A 1989, 122, 251–255. [Google Scholar] [CrossRef]
- Cremaschi, V.; Arcondo, B.; Sirkin, H.; Vázquez, M.; Asenjo, A.; Garcia, J.M.; Abrosimova, G.; Aronin, A. Huge Magnetic Hardening Ascribed to Metastable Crystallites during First Stages of Devitrification of Amorphous FeSiBNbSn Alloys. J. Mater. Res. 2000, 15, 1936–1942. [Google Scholar] [CrossRef]
- Abrosimova, G.; Aronin, A.; Matveev, D.; Zverkova, I.; Molokanov, V.; Pan, S.; Slipenyuk, A. The Structure and Mechanical Properties of Bulk Zr50Ti16.5Cu14Ni18.5 Metallic Glass. J. Mater. Sci. 2001, 36, 3933–3939. [Google Scholar] [CrossRef]
- Herold, U.; Koster, U. Rapidly Quenched Metals III. Proceedings of the Third International Conference on Rapidly Quenched Metals, Organised Jointly by the Materials Science Group of the University of Sussex and the Metals Society, London, and Held at the University of Sussex, Brighton, on 3–7 July; Cantor, B., Ed.; Brighton Metals Society: London, UK, 1978. [Google Scholar]
- Birac, C.; Lesueur, D. Diffusion atomique du lithium dans l’alliage métallique amorphe Pd–Si. Phys. Status Solidi. 1976, 36a, 247. [Google Scholar] [CrossRef]
- Koster, U.; Herold, U. Glassy Metals II. Atomic Structure and Dynamics, Electronic Structure, Magnetic Property; Beck, H., Gűntherodt, H.-J., Eds.; Springer: Berlin, Germany, 1983. [Google Scholar]
- Cuevas, F.G.; Lozano-Perez, S.; Aranda, R.M.; Astacio, R. Crystallization Process and Microstructural Evolution of Melt Spun Al-RE-Ni-(Cu) Ribbons. Metals 2020, 10, 443. [Google Scholar] [CrossRef]
- Yoshizawa, Y.; Oguma, S.; Yamauchi, K. New Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure. J. Appl. Phys. 1988, 64, 6044–6046. [Google Scholar] [CrossRef]
- Trudeau, M.L.; Huot, J.Y.; Schulz, R.; Dussault, D.; Van Neste, A.; L’Espérance, G. Nanocrystalline Fe-(Co,Ni)-Si-B: The mechanical crystallization of amorphous alloys and the effects on electrocatalytic reactions. Phys. Rev. 1992, B 45, 4626. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear Bands in Metallic Glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Talaat, A.; Zhukova, V.; Ipatov, M.; Blanco, J.M.; Gonzalez-Legarreta, L.; Hernando, B.; Del Val, J.J.; Gonzalez, J.; Zhukov, A. Optimization of the Giant Magnetoimpedance Effect of Finemet-Type Microwires through the Nanocrystallization. J. Appl. Phys. 2014, 115, 17A313. [Google Scholar] [CrossRef]
- Conde, C.F.; Blázquez, J.S.; Conde, A. Nanocrystallization Process of the Hitperm Fe-Co-Nb-B Alloys. In Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors; Idzikowski, B., Švec, P., Miglierini, M., Eds.; NATO Science Series; Springer-Verlag: Berlin/Heidelberg, Germany, 2005; Volume 184, pp. 111–121. ISBN 978-1-4020-2963-9. [Google Scholar]
- Kane, S.N.; Gupta, A.; Sarabhai, S.D.; Kraus, L. Influence of Co Content on Structural and Magnetic Properties of CoxFe84−xNb7B9 Alloys. J. Magn. Magn. Mater. 2003, 254–255, 495–497. [Google Scholar] [CrossRef]
- Şopu, D.; Scudino, S.; Bian, X.L.; Gammer, C.; Eckert, J. Atomic-Scale Origin of Shear Band Multiplication in Heterogeneous Metallic Glasses. Scr. Mater. 2020, 178, 57–61. [Google Scholar] [CrossRef]
- Maaß, R.; Löffler, J.F. Shear-Band Dynamics in Metallic Glasses. Adv. Funct. Mater. 2015, 25, 2353–2368. [Google Scholar] [CrossRef]
- Ma, G.Z.; Song, K.K.; Sun, B.A.; Yan, Z.J.; Kühn, U.; Chen, D.; Eckert, J. Effect of Cold-Rolling on the Crystallization Behavior of a CuZr-Based Bulk Metallic Glass. J. Mater. Sci. 2013, 48, 6825–6832. [Google Scholar] [CrossRef]
- Wilde, G.; Rösner, H. Nanocrystallization in a Shear Band: An in Situ Investigation. Appl. Phys. Lett. 2011, 98, 251904. [Google Scholar] [CrossRef]
- Davani, F.A.; Hilke, S.; Rösner, H.; Geissler, D.; Gebert, A.; Wilde, G. On the Shear-Affected Zone of Shear Bands in Bulk Metallic Glasses. J. Alloys Compd. 2020, 837, 155494. [Google Scholar] [CrossRef]
- Suzuki, K.; Fujimori, H.; Hashimoto, K. Materials Science of Amorphous Metals; Masumoto, T., Ed.; Ohmu: Tokyo, Japan, 1982. [Google Scholar]
- He, J.; Kaban, I.; Mattern, N.; Song, K.; Sun, B.; Zhao, J.; Kim, D.H.; Eckert, J.; Greer, A.L. Local Microstructure Evolution at Shear Bands in Metallic Glasses with Nanoscale Phase Separation. Sci. Rep. 2016, 6, 25832. [Google Scholar] [CrossRef]
- Hassanpour, A.; Vaidya, M.; Divinski, S.V.; Wilde, G. Impact of Cryogenic Cycling on Tracer Diffusion in Plastically Deformed Pd40Ni40P20 Bulk Metallic Glass. Acta Mater. 2021, 209, 116785. [Google Scholar] [CrossRef]
- Rösner, H.; Peterlechner, M.; Kübel, C.; Schmidt, V.; Wilde, G. Density Changes in Shear Bands of a Metallic Glass Determined by Correlative Analytical Transmission Electron Microscopy. Ultramicroscopy 2014, 142, 1–9. [Google Scholar] [CrossRef]
- Liu, C.; Roddatis, V.; Kenesei, P.; Maaß, R. Shear-Band Thickness and Shear-Band Cavities in a Zr-Based Metallic Glass. Acta Mater. 2017, 140, 206–216. [Google Scholar] [CrossRef]
- Aronin, A.S.; Louzguine-Luzgin, D.V. On Nanovoids Formation in Shear Bands of an Amorphous Al-Based Alloy. Mech. Mater. 2017, 113, 19–23. [Google Scholar] [CrossRef]
- Aronin, A.; Budchenko, A.; Matveev, D.; Pershina, E.; Tkatch, G.; Abrosimova, G. Nanocrystal Formation in Light Metallic Glasses at Heating and Deformation. Rev. Adv. Mater. Sci. 2016, 53–69. [Google Scholar]
- Fang, J.X.; Vainio, U.; Puff, W.; Würschum, R.; Wang, X.L.; Wang, D.; Ghafari, M.; Jiang, F.; Sun, J.; Hahn, H.; et al. Atomic Structure and Structural Stability of Sc75Fe25 Nanoglasses. Nano Lett. 2012, 12, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Yavari, A.R.; Moulec, A.L.; Inoue, A.; Nishiyama, N.; Lupu, N.; Matsubara, E.; Botta, W.J.; Vaughan, G.; Michiel, M.D.; Kvick, Å. Excess Free Volume in Metallic Glasses Measured by X-ray Diffraction. Acta Mater. 2005, 53, 1611–1619. [Google Scholar] [CrossRef]
- Chen, N.; Frank, R.; Asao, N.; Louzguine-Luzgin, D.V.; Sharma, P.; Wang, J.Q.; Xie, G.Q.; Ishikawa, Y.; Hatakeyama, N.; Lin, Y.C.; et al. Formation and Properties of Au-Based Nanograined Metallic Glasses. Acta Mater. 2011, 59, 6433–6440. [Google Scholar] [CrossRef]
- Pan, J.; Chen, Q.; Liu, L.; Li, Y. Softening and Dilatation in a Single Shear Band. Acta Mater. 2011, 59, 5146–5158. [Google Scholar] [CrossRef]
- Abrosimova, G.; Gunderov, D.; Postnova, E.; Aronin, A. Changes in the Structure of Amorphous Alloys under Deformation by High-Pressure Torsion and Multiple Rolling. Materials 2023, 16, 1321. [Google Scholar] [CrossRef]
- Ramachandrarao, P.; Cantor, B.; Cahn, R.W. Viscous Behaviour of Undercooled Metallic Melts. J. Non-Cryst. Solids 1977, 24, 109–120. [Google Scholar] [CrossRef]
- Egami, T. Structural Relaxation in Amorphous Alloys - Compositional Short Range Ordering. Mater. Res. Bull. 1978, 13, 557–562. [Google Scholar] [CrossRef]
- Soshiroda, T.; Koiwa, M.; Masumoto, T. The Internal Friction and Elastic Modulus of Amorphous Pd–Si and Fe–P–C Alloys. J. Non-Cryst. Solids 1976, 22, 173–187. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Huang, L.; Wang, F.; Huang, P.; Lu, T.J.; Xu, K.W. Suppression of Annealing-Induced Embrittlement in Bulk Metallic Glass by Surface Crystalline Coating. Mater. Des. 2016, 109, 179–185. [Google Scholar] [CrossRef]
- Li, Y.H.; Yang, C.; Kang, L.M.; Zhao, H.D.; Qu, S.G.; Li, X.Q.; Zhang, W.W.; Li, Y.Y. Non-Isothermal and Isothermal Crystallization Kinetics and Their Effect on Microstructure of Sintered and Crystallized TiNbZrTaSi Bulk Alloys. J. Non-Cryst. Solids 2016, 432, 440–452. [Google Scholar] [CrossRef]
- Han, J.; Hong, J.; Kwon, S.; Choi-Yim, H.J. Effect of Cr Addition on Magnetic Properties and Corrosion Resistance of Optimized Co and Fe-Based Amorphous Alloys. Metals 2021, 11, 304. [Google Scholar] [CrossRef]
- Veligatla, M.; Katakam, S.; Das, S.; Dahotre, N.; Gopalan, R.; Prabhu, D.; Babu, D.A.; Choi-Yim, H.; Mukherjee, S. Effect of Iron on the Enhancement of Magnetic Properties for Cobalt-Based Soft Magnetic Metallic Glasses. Metall. Mater. Trans. A 2015, 46, 1019. [Google Scholar] [CrossRef]
- Yoo, C.-S.; Lim, S.K.; Yoon, C.S.; Kim, C.K. Effect of Pt addition on the crystallization of Co-based amorphous metallic alloys. J. Alloys Compd. 2003, 359, 261. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.; Yang, Y.; Zhu, Z.; Zhang, W. Soft magnetic Co-based Co–Fe–B–Si–P bulk metallic glasses with high saturation magnetic flux density of over 1.2 T. J. Alloys Compd. 2020, 84, 154862. [Google Scholar] [CrossRef]
- Guinier, A. Théorie et Technique de La Radiocristallographie; Dunod: Paris, France, 1956. [Google Scholar]
- Kissinger, H.E. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis. J. Res. Natl. Bur. Stan. 1956, 57, 217. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. BCSJ 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Augis, J.A.; Bennett, J.E. Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method. J. Therm. Anal. 1978, 13, 283–292. [Google Scholar] [CrossRef]
- Muhgalin, V.V.; Dorofeev, G.A.; Eremina, M.A.; Lad’yanov, V.I.; Sapegina, I.V. Nanocrystallization of the Amorphous Co-B-Si Alloys Formed by Melt Spinning and Mechanical Alloying. Phys. Metals Metallogr. 2011, 112, 596–602. [Google Scholar] [CrossRef]
- Babu, D.A.; Chelvane, J.A.; Akhtar, D.; Prasad, K.S.; Chandrasekaran, V. Influence of Quenching Rate on the Structural, Soft Magnetic and Magnetoimpedance Properties of Melt-Spun Co69Fe7Si14B10 Alloy. J. Magn. Magn. Mater. 2009, 321, 3084–3089. [Google Scholar] [CrossRef]
- Kulik, T.; Matyja, H.; Lisowski, B. Magnetization of Amorphous and Crystalline Co-Si-B Alloys. Mater. Sci. Eng. 1988, 99, 77–80. [Google Scholar] [CrossRef]
- Elmanov, G.N.; Chernavskii, P.A.; Kozlov, I.V.; Dzhumaev, P.S.; Kostitsyna, E.V.; Tarasov, V.P.; Ignatov, A.S.; Gudoshnikov, S.A. Effect of Heat Treatment on Phase Transformations and Magnetization of Amorphous Co69Fe4Cr4Si12B11 Microwires. J. Alloys Compd. 2018, 741, 648–655. [Google Scholar] [CrossRef]
- Abrosimova, G.; Volkov, N.; Orlova, N.; Aronin, A. BCC Nanocrystal Formation in an Amorphous Co-Si-B-Fe-Nb Alloy on Heating. Mater. Lett. 2018, 219, 97–99. [Google Scholar] [CrossRef]
- Abrosimova, G.E.; Volkov, N.A.; Pershina, E.A.; Chirkova, V.V.; Sholin, I.A.; Aronin, A.S. Formation of Bcc Nanocrystals in Co-Based Amorphous Alloys. J. Non-Cryst. Solids 2021, 565, 120864. [Google Scholar] [CrossRef]
- Abrosimova, G.; Chirkova, V.; Pershina, E.; Volkov, N.; Sholin, I.; Aronin, A. The Effect of Free Volume on the Crystallization of Al87Ni8Gd5 Amorphous Alloy. Metals 2022, 12, 332. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, J.; Wang, H.; Yang, K.; Zhu, Y.; Qing, Y.; Ma, Z.; Gao, L.; Liu, Y.; Wei, S.; et al. Air plasma-sprayed high-entropy (Y0.2Yb0.2Lu0.2Eu0.2Er0.2)3Al5O12 coating with high thermal protection performance. J. Adv. Ceram. 2022, 11, 1571–1582. [Google Scholar] [CrossRef]
- Abrosimova, G.; Chirkova, V.; Matveev, D.; Pershina, E.; Volkov, N.; Aronin, A. Influence of a protective coating on the crystallization of an amorphous Fe78Si13B9 alloy. Metals 2023, 13, 1090. [Google Scholar] [CrossRef]
Heating Rate, β, K/min | Temperature of Crystallization Onset, Tcr, K | |
---|---|---|
Co67Si12B9Fe7Nb5 | Co56B20Fe16Nb8 | |
5 | 712 | 743 |
10 | 719 | 752 |
20 | 727 | 763 |
Composition | Activation Energy of the First Stage of Crystallization, Ea, kJ/mol | ||
---|---|---|---|
Kissinger | Ozawa | Augis–Bennett | |
Co67Si12B9Fe7Nb5 | 385 | 397 | 391 |
Co56B20Fe16Nb8 | 425 | 438 | 432 |
Deformation Degree, % | Lattice Parameter of bcc Crystals, Å | Size of bcc Crystals, nm | Fraction of bcc Crystals, % |
---|---|---|---|
– | 2.833 | 10 | 14 |
1 | 2.833 | 10 | 17 |
20 | 2.833 | 8 | 20 |
Coating | Lattice Parameter of bcc Crystals, Å | Size of bcc Crystals, nm | Fraction of bcc Crystals, % |
---|---|---|---|
– | 2.845 | 7 | 26 |
Ta | 2.845 | 7.5 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrosimova, G.; Chirkova, V.; Volkov, N.; Straumal, B.; Aronin, A. The Effect of a Coating on the Crystallization of Multicomponent Co-Based Amorphous Alloys. Coatings 2024, 14, 116. https://doi.org/10.3390/coatings14010116
Abrosimova G, Chirkova V, Volkov N, Straumal B, Aronin A. The Effect of a Coating on the Crystallization of Multicomponent Co-Based Amorphous Alloys. Coatings. 2024; 14(1):116. https://doi.org/10.3390/coatings14010116
Chicago/Turabian StyleAbrosimova, Galina, Valentina Chirkova, Nikita Volkov, Boris Straumal, and Alexandr Aronin. 2024. "The Effect of a Coating on the Crystallization of Multicomponent Co-Based Amorphous Alloys" Coatings 14, no. 1: 116. https://doi.org/10.3390/coatings14010116
APA StyleAbrosimova, G., Chirkova, V., Volkov, N., Straumal, B., & Aronin, A. (2024). The Effect of a Coating on the Crystallization of Multicomponent Co-Based Amorphous Alloys. Coatings, 14(1), 116. https://doi.org/10.3390/coatings14010116