Recent Advances in CoSex and CoTex Anodes for Alkali-ion Batteries
Abstract
:1. Introduction
2. Electrochemical Reaction Mechanisms
2.1. CoSex
2.2. CoTex
3. Electrode Design
3.1. Introducing Defects
3.1.1. Doping with Metal Elements
3.1.2. Doping with Non-Metallic Elements
3.1.3. Heterojunctions
3.2. Structural Design
3.2.1. Freestanding Electrodes
3.2.2. Carbon-Cloth-Based Electrodes
3.2.3. MOF-Based Electrodes
3.2.4. MXene-Based Electrodes
3.3. Summary of Electrode Design
4. Electrode Synthesis
5. Performance Summary
6. Summary and Expectations
6.1. Replenishing Existing Strategies
6.2. Expanded CBs’ Anode Material Synthesis Method
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grey, C.P.; Hall, D.S. Prospects for Lithium-Ion Batteries and beyond—A 2030 Vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef] [PubMed]
- Huy, V.P.H.; So, S.; Kim, I.T.; Hur, J. Self-Healing Gallium Phosphide Embedded in a Hybrid Matrix for High-Performance Li-Ion Batteries. Energy Storage Mater. 2021, 34, 669–681. [Google Scholar] [CrossRef]
- Zhang, X.; He, Q.; Xu, X.; Xiong, T.; Xiao, Z.; Meng, J.; Wang, X.; Wu, L.; Chen, J.; Mai, L. Insights into the Storage Mechanism of Layered VS2 Cathode in Alkali Metal-Ion Batteries. Adv. Energy Mater. 2020, 10, 1904118. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, H.; Wei, W.; Zheng, Y.; Tao, L.; Wang, Y.; Huang, M.; Shi, J.; Shi, Z.C.; Mitlin, D. Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance. ACS Nano 2021, 15, 1652–1665. [Google Scholar] [CrossRef]
- Hao, Q.; Jia, G.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B.J. Graphitic Carbon Nitride with Different Dimensionalities for Energy and Environmental Applications. Nano Res. 2020, 13, 18–37. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.J.; Yoon, Y.H.; Nguyen, Q.H.; Kim, I.T.; Hur, J.; Lee, S.G. Sb2Te3–TiC–C Nanocomposites for the High-Performance Anode in Lithium-Ion Batteries. Electrochim. Acta 2019, 293, 8–18. [Google Scholar] [CrossRef]
- Xie, H.; Kalisvaart, W.P.; Olsen, B.C.; Luber, E.J.; Mitlin, D.; Buriak, J.M. Sn–Bi–Sb Alloys as Anode Materials for Sodium Ion Batteries. J. Mater. Chem. A Mater. 2017, 5, 9661–9670. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, W.; Rui, X.; Zhou, Y.; Ng, W.J.; Yan, Q.; Fong, E. Biochemistry-Derived Porous Carbon-Encapsulated Metal Oxide Nanocrystals for Enhanced Sodium Storage. Nano Energy 2016, 21, 71–79. [Google Scholar] [CrossRef]
- Xiao, Y.; Hwang, J.Y.; Belharouak, I.; Sun, Y.K. Na Storage Capability Investigation of a Carbon Nanotube-Encapsulated Fe1–xS Composite. ACS Energy Lett. 2017, 2, 364–372. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.P.; Sougrati, M.T.; Feng, Z.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Adv. Energy Mater. 2017, 7, 1601424. [Google Scholar] [CrossRef]
- Hartmann, F.; Etter, M.; Cibin, G.; Liers, L.; Terraschke, H.; Bensch, W. Superior Sodium Storage Properties in the Anode Material NiCr2S4 for Sodium-Ion Batteries: An X-ray Diffraction, Pair Distribution Function, and X-ray Absorption Study Reveals a Conversion Mechanism via Nickel Extrusion. Adv. Mater. 2021, 33, 2101576. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Samuel, E.; Joshi, B.; Kim, T.; Aldalbahi, A.; El-Newehy, M.; Yoon, W.Y.; Yoon, S.S. Supersonically Sprayed Fe2O3/C/CNT Composites for Highly Stable Li-Ion Battery Anodes. Chem. Eng. J. 2020, 395, 125018. [Google Scholar] [CrossRef]
- Ni, J.; Sun, M.; Li, L. Highly Efficient Sodium Storage in Iron Oxide Nanotube Arrays Enabled by Built-In Electric Field. Adv. Mater. 2019, 31, e1902603. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Han, H.; Zhao, Y.; Ma, W.; Sun, H. Polyaniline Coated Fe3O4 Hollow Nanospheres as Anode Materials for Lithium Ion Batteries. Sustain. Energy Fuels 2017, 1, 915–922. [Google Scholar] [CrossRef]
- Xiao, Y.; Miao, Y.; Hu, S.; Gong, F.; Yu, Q.; Zhou, L.; Chen, S. Structural Stability Boosted in 3D Carbon-Free Iron Selenide through Engineering Heterointerfaces with Se-P Bonds for Appealing Na+-Storage. Adv. Funct. Mater. 2022, 33, 2210042. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, W.; Chen, J.; Gu, Z.; Lai, S.; Gan, S.; Xie, J.; Li, Q.; Qu, D.; Wu, X.L.; et al. Engineering Honeycomb-like Carbon Nanosheets Encapsulated Iron Chalcogenides: Superior Cyclability and Rate Capability for Sodium Ion Half/Full Batteries. Electrochim. Acta 2022, 431, 141084. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X.; Gu, Z.; Han, P.; Zhao, B.; Qu, D.; Gao, L.; Liu, Z.; Han, D.; Niu, L. Rationally Designed Nitrogen-Doped Yolk-Shell Fe7Se8/Carbon Nanoboxes with Enhanced Sodium Storage in Half/Full Cells. Carbon 2020, 166, 175–182. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Q.; Li, Y.; Li, Y.; Zhong, W.; Hu, J.; Ji, X.; Yang, C.; Lin, Z.; Huang, K. CoSe@N-Doped Carbon Nanotubes as a Potassium-Ion Battery Anode with High Initial Coulombic Efficiency and Superior Capacity Retention. ACS Nano 2021, 15, 1121–1132. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Yang, W.; Li, Q.; Li, H.; Xu, J.; Li, H.; Liu, B.; Zhao, H.; Li, S.; et al. 3D Ordered Porous Hybrid of ZnSe/N-Doped Carbon with Anomalously High Na+ Mobility and Ultrathin Solid Electrolyte Interphase for Sodium-Ion Batteries. Adv. Funct. Mater. 2021, 31, 2106194. [Google Scholar] [CrossRef]
- Ge, J.M.; Fan, L.; Wang, J.; Zhang, Q.; Liu, Z.; Zhang, E.; Liu, Q.; Yu, X.; Lu, B. MoSe2/N-Doped Carbon as Anodes for Potassium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1801477. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Li, Y.; Zheng, F.; Li, Y.; Deng, Q.; Zhong, W.; Wang, G.; Liu, T. FeSe2/Nitrogen-Doped Carbon as Anode Material for Potassium-Ion Batteries. Chem. Eng. J. 2020, 393, 124590. [Google Scholar] [CrossRef]
- Sun, D.; Liu, S.; Zhang, G.; Zhou, J. NiTe2/N-Doped Graphitic Carbon Nanosheets Derived from Ni-Hexamine Coordination Frameworks for Na-Ion Storage. Chem. Eng. J. 2019, 359, 1659–1667. [Google Scholar] [CrossRef]
- Park, G.D.; Kang, Y.C. Conversion Reaction Mechanism for Yolk-Shell-Structured Iron Telluride-C Nanospheres and Exploration of Their Electrochemical Performance as an Anode Material for Potassium-Ion Batteries. Small Methods 2020, 4, 2000556. [Google Scholar] [CrossRef]
- Bao, S.J.; Li, Y.; Li, C.M.; Bao, Q.; Lu, Q.; Guo, J. Shape Evolution and Magnetic Properties of Cobalt Sulfide. Cryst. Growth Des. 2008, 8, 3745–3749. [Google Scholar] [CrossRef]
- Wang, L.H.; Teng, X.L.; Qin, Y.F.; Li, Q. High Electrochemical Performance and Structural Stability of CoO Nanosheets/CoO Film as Self-Supported Anodes for Lithium-Ion Batteries. Ceram. Int. 2021, 47, 5739–5746. [Google Scholar] [CrossRef]
- Ren, L.L.; Wang, L.H.; Qin, Y.F.; Li, Q. One-Pot Synthesized Amorphous Cobalt Sulfide with Enhanced Electrochemical Performance as Anodes for Lithium-Ion Batteries. Front. Chem. 2022, 9, 818255. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. An Overview on the Advances of LiCoO2 Cathodes for Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2000982. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, K.; Chen, J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries. Adv. Mater. 2015, 27, 5343–5364. [Google Scholar] [CrossRef]
- Kim, W.; Shin, D.; Seo, B.; Chae, S.; Jo, E.; Choi, W. Precisely Tunable Synthesis of Binder-Free Cobalt Oxide-Based Li-Ion Battery Anode Using Scalable Electrothermal Waves. ACS Nano 2022, 16, 17313–17325. [Google Scholar] [CrossRef]
- Xiao, Q.; Song, Q.; Zheng, K.; Zheng, L.; Zhu, Y.; Chen, Z. CoSe2 Nanodots Confined in Multidimensional Porous Nanoarchitecture towards Efficient Sodium Ion Storage. Nano Energy 2022, 98, 107326. [Google Scholar] [CrossRef]
- Zhou, Y.; Han, Y.; Zhang, H.; Sui, D.; Sun, Z.; Xiao, P.; Wang, X.; Ma, Y.; Chen, Y. A Carbon Cloth-Based Lithium Composite Anode for High-Performance Lithium Metal Batteries. Energy Storage Mater. 2018, 14, 222–229. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Wang, C.; Ma, J. Electrospun CoSe@N-Doped Carbon Nanofibers with Highly Capacitive Li Storage. J. Energy Chem. 2019, 33, 160–166. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.; Xia, H.; Cao, L.; Luo, B.; Fan, X.; Zhang, J.; Ou, X. Composition and Architecture Design of Double-Shelled Co0.85Se1−xSx@Carbon/Graphene Hollow Polyhedron with Superior Alkali (Li, Na, K)-Ion Storage. Small 2020, 16, e1905853. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Jiang, B.; Hu, J.; Lao, C.Y.; Gao, Y.; Li, P.; Liu, Z.; Suo, G.; He, D.; Wang, W.; et al. Metallic Octahedral CoSe2 Threaded by N-Doped Carbon Nanotubes: A Flexible Framework for High-Performance Potassium-Ion Batteries. Adv. Sci. 2018, 5, 1800782. [Google Scholar] [CrossRef]
- Yang, E.; Ji, H.; Jung, Y. Two-Dimensional Transition Metal Dichalcogenide Monolayers as Promising Sodium Ion Battery Anodes. J. Phys. Chem. C 2015, 119, 26374–26380. [Google Scholar] [CrossRef]
- Ni, W.; Li, X.; Shi, L.Y.; Ma, J. Research Progress on ZnSe and ZnTe Anodes for Rechargeable Batteries. Nanoscale 2022, 14, 9609–9635. [Google Scholar] [CrossRef]
- Yang, S.H.; Park, S.K.; Park, G.D.; Lee, J.H.; Kang, Y.C. Conversion Reaction Mechanism of Ultrafine Bimetallic Co–Fe Selenides Embedded in Hollow Mesoporous Carbon Nanospheres and Their Excellent K-Ion Storage Performance. Small 2020, 16, e2002345. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Sun, H.; Zhou, J.; Liu, Z.; Qiu, Z.; Wang, D.; Yang, C.; Zeng, Q.; Peng, Z.; et al. Orthorhombic Cobalt Ditelluride with Te Vacancy Defects Anchoring on Elastic MXene Enables Efficient Potassium-Ion Storage. Adv. Mater. 2021, 33, 2100272. [Google Scholar] [CrossRef]
- Xiao, S.; Li, X.; Zhang, W.; Xiang, Y.; Li, T.; Niu, X.; Chen, J.S.; Yan, Q. Bilateral Interfaces in In2Se3–CoIn2–CoSe2 Heterostructures for High-Rate Reversible Sodium Storage. ACS Nano 2021, 15, 13307–13318. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Zeng, X.; Xi, S.; Wang, R.; Zhang, L.; Liang, G.; Davey, K.; Liu, Y.; Zhang, L.; et al. Accelerated Diffusion Kinetics in ZnTe/CoTe2 Heterojunctions for High Rate Potassium Storage. Adv. Energy Mater. 2022, 12, 2202577. [Google Scholar] [CrossRef]
- Li, Q.; Peng, J.; Zhang, W.; Wang, L.; Liang, Z.; Wang, G.; Wu, J.; Fan, W.; Li, H.; Wang, J.; et al. Manipulating the Polytellurides of Metallic Telluride for Ultra-Stable Potassium-Ion Storage: A Case Study of Carbon-Confined CoTe2 Nanofibers. Adv. Energy Mater. 2023, 13, 2300150. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, K.; Zhou, J. Cobalt Telluride/Graphene Composite Nanosheets for Excellent Gravimetric and Volumetric Na-Ion Storage. J. Mater. Chem. A Mater. 2018, 6, 6335–6343. [Google Scholar] [CrossRef]
- Cho, J.S.; Won, J.M.; Lee, J.K.; Kang, Y.C. Design and Synthesis of Multiroom-Structured Metal Compounds-Carbon Hybrid Microspheres as Anode Materials for Rechargeable Batteries. Nano Energy 2016, 26, 466–478. [Google Scholar] [CrossRef]
- Li, J.; Yan, D.; Lu, T.; Yao, Y.; Pan, L. An Advanced CoSe Embedded within Porous Carbon Polyhedra Hybrid for High Performance Lithium-Ion and Sodium-Ion Batteries. Chem. Eng. J. 2017, 325, 14–24. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Yu, D.Y.W.; Rogach, A.L. Direct Conversion of Metal-Organic Frameworks into Selenium/Selenide/Carbon Composites with High Sodium Storage Capacity. Nano Energy 2019, 58, 392–398. [Google Scholar] [CrossRef]
- Sun, Z.; Gu, Z.; Shi, W.; Sun, Z.; Gan, S.; Xu, L.; Liang, H.; Ma, Y.; Qu, D.; Zhong, L.; et al. Mesoporous N-Doped Carbon-Coated CoSe Nanocrystals Encapsulated in S-Doped Carbon Nanosheets as Advanced Anode with Ultrathin Solid Electrolyte Interphase for High-Performance Sodium-Ion Half/Full Batteries. J. Mater. Chem. A Mater. 2022, 10, 2113–2121. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Wong, K.W.; Zhang, W.; Chen, T.; Zhao, W.; Huang, S. Rational Design of Embedded CoTe2 nanoparticles in Freestanding N-Doped Multichannel Carbon Fibers for Sodium-Ion Batteries with Ultralong Cycle Lifespan. ACS Appl. Mater. Interfaces 2021, 13, 34134–34144. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, M.; Yan, X.; Jia, H.; Fei, B.; Ha, Y.; Qing, H.; Yang, H.; Liu, M.; Wu, R. Vacancy Occupation-Driven Polymorphic Transformation in Cobalt Ditelluride for Boosted Oxygen Evolution Reaction. ACS Nano 2020, 14, 6968–6979. [Google Scholar] [CrossRef]
- Fan, H.; Mao, P.; Sun, H.; Wang, Y.; Mofarah, S.S.; Koshy, P.; Arandiyan, H.; Wang, Z.; Liu, Y.; Shao, Z. Recent Advances of Metal Telluride Anodes for High-Performance Lithium/Sodium-Ion Batteries. Mater. Horiz. 2022, 9, 524–546. [Google Scholar] [CrossRef]
- Jiang, Y.; Zou, G.; Hou, H.; Li, J.; Liu, C.; Qiu, X.; Ji, X. Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. ACS Nano 2019, 13, 10787–10797. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, M.; Wu, F.; Ye, Z.; Zhang, Y.; Wang, Z.; Zhou, Y.; Li, L.; Chen, R. Cobalt Selenide Hollow Polyhedron Encapsulated in Graphene for High-Performance Lithium/Sodium Storage. Small 2021, 17, 2102893. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, V.; Nam, K.H.; Park, C.M. Robust Polyhedral CoTe2–C Nanocomposites as High-Performance Li-A Nd Na-Ion Battery Anodes. ACS Appl. Energy Mater. 2020, 3, 4877–4887. [Google Scholar] [CrossRef]
- Park, S.; Park, S.; Mathew, V.; Sambandam, B.; Hwang, J.Y.; Kim, J. A New Tellurium-Based Ni3TeO6-Carbon Nanotubes Composite Anode for Na-Ion Battery. Int. J. Energy Res. 2022, 46, 16041–16049. [Google Scholar] [CrossRef]
- Ge, P.; Li, S.; Xu, L.; Zou, K.; Gao, X.; Cao, X.; Zou, G.; Hou, H.; Ji, X. Hierarchical Hollow-Microsphere Metal–Selenide@Carbon Composites with Rational Surface Engineering for Advanced Sodium Storage. Adv. Energy Mater. 2019, 9, 1803035. [Google Scholar] [CrossRef]
- Miao, Y.; Xiao, Y.; Hu, S.; Chen, S. Chalcogenides Metal-Based Heterostructure Anode Materials toward Na+-Storage Application. Nano Res. 2022, 16, 2347–2365. [Google Scholar] [CrossRef]
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural Defects in Graphene. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, X.; Dong, W.; Lin, X.; Cheng, Y.; Tang, Y.; Zhao, S.; Li, G.; Huang, F. ZnO/ZnS Heterostructure with Enhanced Interfacial Lithium Absorption for Robust and Large-Capacity Energy Storage. Energy Environ. Sci. 2022, 15, 4738–4747. [Google Scholar] [CrossRef]
- Arandiyan, H.; Mofarah, S.S.; Sorrell, C.C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H.; Ni, B.J.; Rezaei, M.; et al. Defect Engineering of Oxide Perovskites for Catalysis and Energy Storage: Synthesis of Chemistry and Materials Science. Chem. Soc. Rev. 2021, 50, 10116–10211. [Google Scholar] [CrossRef]
- Wang, Y.; Arandiyan, H.; Chen, X.; Zhao, T.; Bo, X.; Su, Z.; Zhao, C. Microwave-Induced Plasma Synthesis of Defect-Rich, Highly Ordered Porous Phosphorus-Doped Cobalt Oxides for Overall Water Electrolysis. J. Phys. Chem. C 2020, 124, 9971–9978. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Li, W.; Gao, W.; Tang, Y.; Li, R. Hollow Bimetallic Cobalt-Based Selenide Polyhedrons Derived from Metal-Organic Framework: An Efficient Bifunctional Electrocatalyst for Overall Water Splitting. J. Mater. Chem. A Mater. 2017, 5, 17982–17989. [Google Scholar] [CrossRef]
- Fang, C.; Huang, Y.; Zhang, W.; Han, J.; Deng, Z.; Cao, Y.; Yang, H. Routes to High Energy Cathodes of Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1501727. [Google Scholar] [CrossRef]
- Billaud, J.; Singh, G.; Armstrong, A.R.; Gonzalo, E.; Roddatis, V.; Armand, M.; Rojo, T.; Bruce, P.G. Na0.67Mn1−XMgxO2 (0 ≤ x ≤ 0.2): A High Capacity Cathode for Sodium-Ion Batteries. Energy Environ. Sci. 2014, 7, 1387–1391. [Google Scholar] [CrossRef]
- Narsimulu, D.; Kakarla, A.K.; Vamsi Krishna, B.N.; Shanthappa, R.; Yu, J.S. Nitrogen-Doped Reduced Graphene Oxide Incorporated Ni2O3–Co3O4@MoS2 Hollow Nanocubes for High-Performance Energy Storage Devices. J. Alloys Compd. 2022, 922, 166131. [Google Scholar] [CrossRef]
- Jana, J.; Sharma, T.S.K.; Chung, J.S.; Choi, W.M.; Hur, S.H. The Role of Surface Carbide/Oxide Heterojunction in Electrocatalytic Behavior of 3D-Nanonest Supported FeiMoj Composites. J. Alloys Compd. 2023, 946, 169395. [Google Scholar] [CrossRef]
- Pellow, M.A.; Emmott, C.J.M.; Barnhart, C.J.; Benson, S.M. Hydrogen or Batteries for Grid Storage? A Net Energy Analysis. Energy Environ. Sci. 2015, 8, 1938–1952. [Google Scholar] [CrossRef]
- Ge, P.; Hou, H.; Li, S.; Huang, L.; Ji, X. Three-Dimensional Hierarchical Framework Assembled by Cobblestone-Like CoSe2@C Nanospheres for Ultrastable Sodium-Ion Storage. ACS Appl. Mater. Interfaces 2018, 10, 14716–14726. [Google Scholar] [CrossRef]
- Ge, P.; Hou, H.; Li, S.; Yang, L.; Ji, X. Tailoring Rod-Like FeSe2 Coated with Nitrogen-Doped Carbon for High-Performance Sodium Storage. Adv. Funct. Mater. 2018, 28, 1801765. [Google Scholar] [CrossRef]
- Lu, M.; Liu, C.; Li, X.; Jiang, S.; Yao, Z.; Liu, T.; Yang, Y. Mixed Phase Mo-Doped CoSe2 Nanosheets Encapsulated in N-Doped Carbon Shell with Boosted Sodium Storage Performance. J. Alloys Compd. 2022, 922, 166265. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, X.L.; Yao, Z.J.; Xie, D.; Xia, X.H.; Gu, C.D.; Tu, J.P. Molybdenum-Doped Tin Oxide Nanoflake Arrays Anchored on Carbon Foam as Flexible Anodes for Sodium-Ion Batteries. J. Colloid Interface Sci. 2020, 560, 169–176. [Google Scholar] [CrossRef]
- Wang, P.; Huang, J.; Zhang, J.; Wang, L.; Sun, P.; Yang, Y.; Yao, Z. Coupling Hierarchical Iron Cobalt Selenide Arrays with N-Doped Carbon as Advanced Anodes for Sodium Ion Storage. J. Mater. Chem. A Mater. 2021, 9, 7248–7256. [Google Scholar] [CrossRef]
- Hu, L.; Li, L.; Zhang, Y.; Tan, X.; Yang, H.; Lin, X.; Tong, Y. Construction of Cobalt Vacancies in Cobalt Telluride to Induce Fast Ionic/Electronic Diffusion Kinetics for Lithium-Ion Half/Full Batteries. J. Mater. Sci. Technol. 2022, 127, 124–132. [Google Scholar] [CrossRef]
- Fang, G.; Wang, Q.; Zhou, J.; Lei, Y.; Chen, Z.; Wang, Z.; Pan, A.; Liang, S. Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction. ACS Nano 2019, 13, 5635–5645. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Li, X.; Xia, G.; Gong, G.; Zheng, Z.; Chen, C.; Hu, C. P-Doped CoSe2 Nanoparticles Embedded in 3D Honeycomb-like Carbon Network for Long Cycle-Life Na-Ion Batteries. J. Mater. Sci. Technol. 2021, 77, 100–107. [Google Scholar] [CrossRef]
- Shin, I.; Cho, W.J.; An, E.S.; Park, S.; Jeong, H.W.; Jang, S.; Baek, W.J.; Park, S.Y.; Yang, D.H.; Seo, J.H.; et al. Spin–Orbit Torque Switching in an All-Van Der Waals Heterostructure. Adv. Mater. 2022, 34, e2101730. [Google Scholar] [CrossRef]
- Pan, L.; Grutter, A.; Zhang, P.; Che, X.; Nozaki, T.; Stern, A.; Street, M.; Zhang, B.; Casas, B.; He, Q.L.; et al. Observation of Quantum Anomalous Hall Effect and Exchange Interaction in Topological Insulator/Antiferromagnet Heterostructure. Adv. Mater. 2020, 32, 2001460. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Niu, R.; Liu, J.; Guo, S.; Yang, Y.; Liu, Z.; Li, J. Electrostatic Self-Assembly of 2D/2D CoWO4/g–C3N4 p—n Heterojunction for Improved Photocatalytic Hydrogen Evolution: Built-in Electric Field Modulated Charge Separation and Mechanism Unveiling. Nano Res. 2022, 15, 6987–6998. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Z.; von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D.; Yang, H.Y. Recent Advances in Heterostructure Engineering for Lithium–Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2003689. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; Chen, Q.; Xia, X.; Chen, M. Emerging of Heterostructure Materials in Energy Storage: A Review. Adv. Mater. 2021, 33, 2100855. [Google Scholar] [CrossRef]
- Liang, L.; Gu, W.; Wu, Y.; Zhang, B.; Wang, G.; Yang, Y.; Ji, G. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities. Adv. Mater. 2022, 34, 2106195. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Quan, W.; Hong, Y.; Zhang, Z.; Tang, Z.; Li, J. Ti3+-Free Three-Phase Li4Ti5O12/TiO2 for High-Rate Lithium Ion Batteries: Capacity and Conductivity Enhancement by Phase Boundaries. Nano Energy 2017, 32, 294–301. [Google Scholar] [CrossRef]
- Luo, D.; Ma, C.; Hou, J.; Zhang, Z.; Feng, R.; Yang, L.; Zhang, X.; Lu, H.; Liu, J.; Li, Y.; et al. Integrating Nanoreactor with O–Nb–C Heterointerface Design and Defects Engineering Toward High-Efficiency and Longevous Sodium Ion Battery. Adv. Energy Mater. 2022, 12, 2103716. [Google Scholar] [CrossRef]
- Yang, C.; Liang, X.; Ou, X.; Zhang, Q.; Zheng, H.S.; Zheng, F.; Wang, J.H.; Huang, K.; Liu, M. Heterostructured Nanocube-Shaped Binary Sulfide (SnCo)S2 Interlaced with S-Doped Graphene as a High-Performance Anode for Advanced Na+ Batteries. Adv. Funct. Mater. 2019, 29, 1807971. [Google Scholar] [CrossRef]
- Xiao, Y.; Miao, Y.; Wan, S.; Sun, Y.K.; Chen, S. Synergistic Engineering of Se Vacancies and Heterointerfaces in Zinc-Cobalt Selenide Anode for Highly Efficient Na-Ion Batteries. Small 2022, 18, 2202582. [Google Scholar] [CrossRef] [PubMed]
- Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Venna, S.R.; Jasinski, J.B.; Carreon, M.A. Structural Evolution of Zeolitic Imidazolate Framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033. [Google Scholar] [CrossRef]
- He, Y.; Luo, M.; Dong, C.; Ding, X.; Yin, C.; Nie, A.; Chen, Y.; Qian, Y.; Xu, L. Coral-like NixCo1−xSe2 for Na-Ion Battery with Ultralong Cycle Life and Ultrahigh Rate Capability. J. Mater. Chem. A Mater. 2019, 7, 3933–3940. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Z.; Xu, F.; Qin, Z.; Sun, R.; Wang, C.; Lu, S.; Zhang, Y.; Fan, H. Ni3Se4@CoSe2 Hetero-Nanocrystals Encapsulated into CNT-Porous Carbon Interpenetrating Frameworks for High-Performance Sodium Ion Battery. J. Colloid Interface Sci. 2022, 611, 718–725. [Google Scholar] [CrossRef]
- Zhang, K.; Park, M.; Zhou, L.; Lee, G.H.; Li, W.; Kang, Y.M.; Chen, J. Urchin-Like CoSe2 as a High-Performance Anode Material for Sodium-Ion Batteries. Adv. Funct. Mater. 2016, 26, 6728–6735. [Google Scholar] [CrossRef]
- Ko, Y.N.; Choi, S.H.; Kang, Y.C. Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 6449–6456. [Google Scholar] [CrossRef]
- Hu, J.-Z.; Liu, W.-J.; Zheng, J.-H.; Li, G.-C.; Bu, Y.-F.; Qiao, F.; Lian, J.-B.; Zhao, Y. Coral-like Cobalt Selenide/Carbon Nanosheet Arrays Attached on Carbon Nanofibers for High-Rate Sodium-Ion Storage. Rare Met. 2023, 42, 916–928. [Google Scholar] [CrossRef]
- Hong, L.; Ju, S.; Yang, Y.; Zheng, J.; Xia, G.; Huang, Z.; Liu, X.; Yu, X. Hollow-Shell Structured Porous CoSe2 Microspheres Encapsulated by MXene Nanosheets for Advanced Lithium Storage. Sustain. Energy Fuels 2020, 4, 2352–2362. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, L.; Zhang, W.; Liu, S.; Wen, S.; Mao, X.; Dai, P.; Li, L.; Liu, D.; Zhao, X.; et al. A CoSe-C@C Core-Shell Structure with Stable Potassium Storage Performance Realized by an Effective Solid Electrolyte Interphase Layer. J. Mater. Chem. A Mater. 2021, 9, 11397–11404. [Google Scholar] [CrossRef]
- Fan, H.; Liu, C.; Lan, G.; Mao, P.; Zheng, R.; Wang, Z.; Liu, Y.; Sun, H. Uniform Carbon Coating Mediated Multiphase Interface in Submicron Sized Rodlike Cobalt Ditelluride Anodes for High-Capacity and Fast Lithium Storage. Electrochim. Acta 2023, 439, 141614. [Google Scholar] [CrossRef]
- Nie, P.; Le, Z.; Chen, G.; Liu, D.; Liu, X.; Wu, H.B.; Xu, P.; Li, X.; Liu, F.; Chang, L.; et al. Graphene Caging Silicon Particles for High-Performance Lithium-Ion Batteries. Small 2018, 14, 1800635. [Google Scholar] [CrossRef]
- Xu, H.; Cao, J.; Shan, C.; Wang, B.; Xi, P.; Liu, W.; Tang, Y. MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis. Angew. Chem. 2018, 130, 8790–8794. [Google Scholar] [CrossRef]
- Huang, P.; Ying, H.; Zhang, S.; Zhang, Z.; Han, W.Q. In Situ Fabrication of MXene/CuS Hybrids with Interfacial Covalent Bonding via Lewis Acidic Etching Route for Efficient Sodium Storage. J. Mater. Chem. A Mater. 2022, 10, 22135–22144. [Google Scholar] [CrossRef]
- Jin, T.; Han, Q.; Wang, Y.; Jiao, L. 1D Nanomaterials: Design, Synthesis, and Applications in Sodium–Ion Batteries. Small 2018, 14, 1703086. [Google Scholar] [CrossRef]
- Nie, S.; Liu, L.; Liu, J.; Xie, J.; Zhang, Y.; Xia, J.; Yan, H.; Yuan, Y.; Wang, X. Nitrogen-Doped TiO2–C Composite Nanofibers with High-Capacity and Long-Cycle Life as Anode Materials for Sodium-Ion Batteries. Nanomicro Lett. 2018, 10, 71. [Google Scholar] [CrossRef]
- La Monaca, A.; Paolella, A.; Guerfi, A.; Rosei, F.; Zaghib, K. Electrospun Ceramic Nanofibers as 1D Solid Electrolytes for Lithium Batteries. Electrochem. Commun. 2019, 104, 106483. [Google Scholar] [CrossRef]
- Park, J.S.; Park, G.D.; Kang, Y.C. Exploration of Cobalt Selenite–Carbon Composite Porous Nanofibers as Anode for Sodium-Ion Batteries and Unveiling Their Conversion Reaction Mechanism. J. Mater. Sci. Technol. 2021, 89, 24–35. [Google Scholar] [CrossRef]
- Li, F.; Li, L.; Yao, T.; Liu, T.; Zhu, L.; Li, Y.; Lu, H.; Qian, R.; Liu, Y.; Wang, H. Electrospinning Synthesis of Porous Carbon Nanofiber Supported CoSe2 Nanoparticles towards Enhanced Sodium Ion Storage. Mater. Chem. Phys. 2021, 262, 124314. [Google Scholar] [CrossRef]
- Lin, J.; Zhong, Z.; Wang, H.; Zheng, X.; Wang, Y.; Qi, J.; Cao, J.; Fei, W.; Huang, Y.; Feng, J. Rational Constructing Free-Standing Se Doped Nickel-Cobalt Sulfides Nanotubes as Battery-Type Electrode for High-Performance Supercapattery. J. Power Sources 2018, 407, 6–13. [Google Scholar] [CrossRef]
- Xia, Z.; Sun, H.; He, X.; Sun, Z.; Lu, C.; Li, J.; Peng, Y.; Dou, S.; Sun, J.; Liu, Z. In Situ Construction of CoSe2@vertical-Oriented Graphene Arrays as Self-Supporting Electrodes for Sodium-Ion Capacitors and Electrocatalytic Oxygen Evolution. Nano Energy 2019, 60, 385–393. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Lou, X.W.D. Hollow Carbon Nanofibers Filled with MnO2 Nanosheets as Efficient Sulfur Hosts for Lithium-Sulfur Batteries. Angew. Chem. 2015, 127, 13078–13082. [Google Scholar] [CrossRef]
- Xin, D.; He, S.; Han, X.; Zhang, X.; Cheng, Z.; Xia, M. Co-Doped 1T-MoS2 Nanosheets Anchored on Carbon Cloth as Self-Supporting Anode for High-Performance Lithium Storage. J. Alloys Compd. 2022, 921, 166099. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Cai, P.; Jia, J.; Wen, Z. A Self-Supported Ni–Co Perselenide Nanorod Array as a High-Activity Bifunctional Electrode for a Hydrogen-Producing Hydrazine Fuel Cell. J. Mater. Chem. A Mater. 2018, 6, 17763–17770. [Google Scholar] [CrossRef]
- Liu, B.; Li, H.; Cao, B.; Jiang, J.; Gao, R.; Zhang, J. Few Layered N, P Dual-Doped Carbon-Encapsulated Ultrafine MoP Nanocrystal/MoP Cluster Hybrids on Carbon Cloth: An Ultrahigh Active and Durable 3D Self-Supported Integrated Electrode for Hydrogen Evolution Reaction in a Wide PH Range. Adv. Funct. Mater. 2018, 28, 1801527. [Google Scholar] [CrossRef]
- Sun, T.; Huang, C.; Shu, H.; Luo, L.; Liang, Q.; Chen, M.; Su, J.; Wang, X. Porous NiCo2S4 Nanoneedle Arrays with Highly Efficient Electrocatalysis Anchored on Carbon Cloths as Self-Supported Hosts for High-Loading Li–S Batteries. ACS Appl. Mater. Interfaces 2020, 12, 57975–57986. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, M.; Zheng, L.; Gao, W.; Liu, R.; Pan, J.; Zhang, H.; Yang, Z.; Li, X. In Situ Enhance Lithium Polysulfides Redox Kinetics by Carbon Cloth/MoO3 Self-Standing Electrode for Lithium–Sulfur Battery. J. Mater. Sci. 2022, 57, 10003–10016. [Google Scholar] [CrossRef]
- Kim, I.; Park, S.W.; Kim, D.W. Carbon-Coated Tungsten Diselenide Nanosheets Uniformly Assembled on Porous Carbon Cloth as Flexible Binder-Free Anodes for Sodium-Ion Batteries with Improved Electrochemical Performance. J. Alloys Compd. 2020, 827, 154348. [Google Scholar] [CrossRef]
- Li, T.; Bai, Y.; Wang, Y.; Xu, H.; Jin, H. Advances in Transition-Metal (Zn, Mn, Cu)-Based MOFs and Their Derivatives for Anode of Lithium-Ion Batteries. Coord Chem. Rev. 2020, 410, 213221. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Q.L.; Zou, R.; Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2017, 2, 52–80. [Google Scholar] [CrossRef]
- Miao, W.; Zhang, Y.; Li, H.; Zhang, Z.; Li, L.; Yu, Z.; Zhang, W. ZIF-8/ZIF-67-Derived 3D Amorphous Carbon-Encapsulated CoS/NCNTs Supported on CoS-Coated Carbon Nanofibers as an Advanced Potassium-Ion Battery Anode. J. Mater. Chem. A Mater. 2019, 7, 5504–5512. [Google Scholar] [CrossRef]
- Cheng, Z.; Du, T.; Gong, H.; Zhou, L. In-Situ Synthesis of Fe7S8 on Metal Sites of MOFs as High-Capacity and Fast-Kinetics Anodes for Sodium Ion Batteries. J. Alloys Compd. 2023, 940, 168854. [Google Scholar] [CrossRef]
- Guo, W.; Sun, W.; Lv, L.P.; Kong, S.; Wang, Y. Microwave-Assisted Morphology Evolution of Fe-Based Metal-Organic Frameworks and Their Derived Fe2O3 Nanostructures for Li-Ion Storage. ACS Nano 2017, 11, 4198–4205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pan, A.; Ding, L.; Zhou, Z.; Wang, Y.; Niu, S.; Liang, S.; Cao, G. Nitrogen-Doped Yolk-Shell-Structured CoSe/C Dodecahedra for High-Performance Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 3624–3633. [Google Scholar] [CrossRef]
- Feng, J.; Luo, S.H.; Yan, S.X.; Zhan, Y.; Wang, Q.; Zhang, Y.H.; Liu, X.; Chang, L.J. Rational Design of Yolk–Shell Zn-Co-Se@N-Doped Dual Carbon Architectures as Long-Life and High-Rate Anodes for Half/Full Na-Ion Batteries. Small 2021, 17, e2101887. [Google Scholar] [CrossRef]
- Yin, Y.; Rioux, R.M.; Erdonmez, C.K.; Hughes, S.; Somorjai, G.A.; Alivisatos, A.P. Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Science 2004, 304, 711–714. [Google Scholar] [CrossRef]
- Wang, B.; Miao, X.; Dong, H.; Ma, X.; Wu, J.; Cheng, Y.; Geng, H.; Li, C.C. In Situ construction of Active Interfaces towards Improved High-Rate Performance of CoSe2. J. Mater. Chem. A Mater. 2021, 9, 14582–14592. [Google Scholar] [CrossRef]
- Pang, J.; Mendes, R.G.; Bachmatiuk, A.; Zhao, L.; Ta, H.Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M.H. Applications of 2D MXenes in Energy Conversion and Storage Systems. Chem. Soc. Rev. 2019, 48, 72–133. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Jing, Y.; Ma, J.; Du, C.F.; Yan, Q. Surface Modified MXene-Based Nanocomposites for Electrochemical Energy Conversion and Storage. Small 2019, 15, e1901503. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, Y.; Xu, X.; Zhou, J.; Yang, F.; Li, H.; Chen, H.; Chen, Y.; Liu, Z.; Qiu, Z.; et al. Strongly Coupled Te-SnS2/MXene Superstructure with Self-Autoadjustable Function for Fast and Stable Potassium Ion Storage. J. Energy Chem. 2021, 61, 416–424. [Google Scholar] [CrossRef]
- Kannan, K.; Sadasivuni, K.K.; Abdullah, A.M.; Kumar, B. Current Trends in MXene-Based Nanomaterials for Energy Storage and Conversion System: A Mini Review. Catalysts 2020, 10, 495. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Nguyen, B.S.; Hu, C.; Nguyen, C.C.; Nguyen, D.L.T.; Dinh, M.T.N.; Vo, D.V.N.; Trinh, Q.T.; Shokouhimehr, M.; Hasani, A.; et al. Novel Architecture Titanium Carbide (Ti3C2Tx) Mxene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials 2020, 10, 602. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Gao, G.; Li, F.T.; Ma, T.Y.; Du, A.; Qiao, S.Z. Ti3C2 MXene Co-Catalyst on Metal Sulfide Photo-Absorbers for Enhanced Visible-Light Photocatalytic Hydrogen Production. Nat. Commun. 2017, 8, 13907. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y. Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. J. Am. Chem. Soc. 2014, 136, 4113–4116. [Google Scholar] [CrossRef]
- Wang, M.; Peng, A.; Zeng, M.; Chen, L.; Li, X.; Yang, Z.; Chen, J.; Guo, B.; Ma, Z.; Li, X. Facilitating the Redox Conversion of CoSe2 nanorods by Ti3C2Tx to Improve the Electrode Durability as Anodes for Sodium-Ion Batteries. Sustain. Energy Fuels 2021, 5, 6381–6391. [Google Scholar] [CrossRef]
- Acharya, J.; Ojha, G.P.; Pant, B.; Park, M. Construction of Self-Supported Bimetallic MOF-Mediated Hollow and Porous Tri-Metallic Selenide Nanosheet Arrays as Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors. J. Mater. Chem. A Mater. 2021, 9, 23977–23993. [Google Scholar] [CrossRef]
- Sarkar, D.; Das, D.; Nagarajan, S.; Mitlin, D. Thermally Fabricated Cobalt Telluride in Nitrogen-Rich Carbon Dodecahedra as High-Rate Potassium and Sodium Ion Battery Anodes. Sustain. Energy Fuels 2022, 6, 3582–3590. [Google Scholar] [CrossRef]
- Zhao, H.; Qi, Y.; Liang, K.; Li, J.; Zhou, L.; Chen, J.; Huang, X.; Ren, Y. Interface-Driven Pseudocapacitance Endowing Sandwiched CoSe2/N-Doped Carbon/TiO2 Microcubes with Ultra-Stable Sodium Storage and Long-Term Cycling Stability. ACS Appl. Mater. Interfaces 2021, 13, 61555–61564. [Google Scholar] [CrossRef]
- Lei, Y.X.; Miao, N.X.; Zhou, J.P.; Hassan, Q.U.; Wang, J.Z. Novel Magnetic Properties of CoTe Nanorods and Diversified CoTe2 Nanostructures Obtained at Different NaOH Concentrations. Sci. Technol. Adv. Mater. 2017, 18, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Keles, O.; Karahan, B.D.; Eryilmaz, L.; Amine, R.; Abouimrane, A.; Chen, Z.; Zuo, X.; Zhu, Z.; Al-Hallaj, S.; Amine, K. Superlattice-Structured Films by Magnetron Sputtering as New Era Electrodes for Advanced Lithium-Ion Batteries. Nano Energy 2020, 76, 105094. [Google Scholar] [CrossRef]
- Sun, C.; Gao, L.; Yang, Y.; Yan, Z.; Zhang, D.; Bian, X. Ultrafast Microwave-Induced Synthesis of Lithiophilic Oxides Modified 3D Porous Mesh Skeleton for High-Stability Li-Metal Anode. Chem. Eng. J. 2023, 452, 139407. [Google Scholar] [CrossRef]
- Huang, P.; Ying, H.; Zhang, S.; Zhang, Z.; Han, W.Q. Molten Salts Etching Route Driven Universal Construction of MXene/Transition Metal Sulfides Heterostructures with Interfacial Electronic Coupling for Superior Sodium Storage. Adv. Energy Mater. 2022, 12, 2202052. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Guan, B.; Lou, X.W.D. Unusual Formation of CoSe@carbon Nanoboxes, Which Have an Inhomogeneous Shell, for Efficient Lithium Storage. Angew. Chem. 2016, 128, 9666–9670. [Google Scholar] [CrossRef]
- Sui, Y.; Guo, J.; Chen, X.; Guan, J.; Chen, X.; Wei, H.; Liu, Q.; Wei, B.; Geng, H. Highly Dispersive CoSe2 Nanoparticles Encapsulated in Carbon Nanotube-Grafted Multichannel Carbon Fibers as Advanced Anodes for Sodium-Ion Half/Full Batteries. Inorg. Chem. Front. 2022, 9, 5217–5225. [Google Scholar] [CrossRef]
- He, Y.; Li, H.; Yu, J.; Wang, Q.; Dai, Y.; Shan, R.; Zhou, G. Hierarchical Mesoporous Binary Nickel Cobalt Selenides Nanospheres for Enhanced Sodium-Ion Storage. J. Alloys Compd. 2023, 938, 168608. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, H.; Li, L.; Lu, S.; Mao, H.; Ding, S. A CoSe2-Based 3D Conductive Network for High-Performance Potassium Storage: Enhancing Charge Transportation by Encapsulation and Restriction Strategy. Mater. Chem. Front. 2021, 5, 5351–5360. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, F.; Ye, Z.; Zhou, Y.; Chen, Y.; Zhang, Y.; Lv, Z.; Li, L.; Xie, M.; Chen, R. Superimposed Effect of Hollow Carbon Polyhedron and Interconnected Graphene Network to Achieve CoTe2 Anode for Fast and Ultralong Sodium Storage. J. Power Sources 2023, 554, 232174. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, W.; Lei, Y.; Wang, L.; Wang, G.; Wu, J.; Fan, W.; Huang, S. Dual-Type Carbon Confinement Strategy: Improving the Stability of CoTe2 Nanocrystals for Sodium-Ion Batteries with a Long Lifespan. ACS Appl. Mater. Interfaces 2022, 14, 6801–6809. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Bi, M.; Guo, J.; Fang, Z. CoTe Nanorods/RGO Composites as a Potential Anode Material for Sodium-Ion Storage. Electrochim. Acta 2019, 313, 331–340. [Google Scholar] [CrossRef]
- Yang, S.; Park, G.D.; Kang, Y.C. Conversion Reaction Mechanism of Cobalt Telluride-Carbon Composite Microspheres Synthesized by Spray Pyrolysis Process for K-Ion Storage. Appl. Surf. Sci. 2020, 529, 147140. [Google Scholar] [CrossRef]
Sample Name | Synthesis Method | Structure | Cycle Performance (mAh g−1, A g−1) | Rate Performance (mAh g−1, A g−1) | Initial Coulombic Efficiency (%, A g−1) | Battery Type | Ref./Year |
---|---|---|---|---|---|---|---|
CoSe2/carbon nanoboxes | Annealing | Nanoboxes | 860/0.2/100 th 660/1/100 th | 686/2 | 78.3%/0.2 | LIB | [135]/2016 |
CoSe@NCNTs | Annealing | Nanowires | 326/0.5/100 th | 278/3 | 95%/0.1 | PIB | [18]/2021 |
CoSe2-CNS | Annealing | Nanosheets | ~250/10/2000 th | 352/10 | SIB | [103]/2019 | |
CoSe2@NC/CNTs | Annealing | Nanowires | 480/1/200 th 369/10/800 th | 360/10 | SIB | [136]/2022 | |
Mo–CoSe2@NC | Electrodeposition + selenization | Self-supporting nanosheet | 672/0.5/200 th | 313/5 | 47.9%/0.5 | SIB | [68]/2022 |
In2Se3/CoSe2–450 | Annealing | MIL-68@ZIF-67 core–shell | 445.0/0.5/200 th 297.5/5/2000 th 205.5/10/2000 th | 371.6/20 | 61.2%/0.1 | SIB | [39]/2021 |
TNC–CoSe2 | Precipitation + sol–gel + annealing | Microcubes | 511.2/0.2/200 th | 464/6.4 | 88.26%/0.2 | SIB | [130]/2021 |
ZnSe/CoSe2–CN | Annealing | Spherical particles | 547.1/0.5/300 th 422.6/3/300 th | 362.1/20 | 97.7%/0.1 | SIB | [83]/2022 |
CoSe2@MXene | Annealing | Porous hollow shell encapsulated by MXene nanosheets | 910/0.2/100 th 1279/1/1000 th | 465/5 | 71.9%/0.2 | LIB | [91]/2020 |
Ni0.47Co0.53Se2 | Solvothermal | Coral-like | 321/2/2000 th | 277/15 | 98.5%/0.1 | SIB | [86]/2019 |
p–CoSeO3–CNF | Electrospun + annealing | Composite porous nanofibers | 288/0.2/200 th | 207/5 | 56.7%/0.5 | SIB | [100]/2021 |
CoSe2/CoSe | Annealing | Hierarchical hollow raspberry-like superstructure | 1361/1/1000 th 579/2/2000 th 315/5/1000 th | 406/5 | LIB | [54]/2019 | |
Ni0.33Co0.67Se2 | Solvothermal selenization | Hierarchical mesoporous nanospheres | 301.9/1/1300 th | 314.5/8 | 85.4%/0.5 | SIB | [137]/2023 |
CoSe2/ZnSe | Annealing | Bimetallic heterostructure | ~250/8/4000 th ~200/10/4000 th | 263/10 | 72.3%/0.1 | SIB | [72]/2019 |
CoSSe@C/G | Solvothermal + annealing | Double-carbon shells | 636.2/2/1400 th 353/1/200 th 208.1/0.2/100 th | 254.5/10 266.6/10 195.7/2 | 68.09%/0.1 71.2%/0.1 48.3%/0.1 | LIB SIB PIB | [33]/2020 |
NCNF@CS | Chemical vapor deposition + solvothermal | Octahedral threaded N-doped carbon nanotubes | 253/0.2/100 th 173/2/600 th | 196/2 | 69.3%/0.2 | PIB | [34]/2018 |
3DG/CoSe2@CNWs | Hydrogel | Multidimensional porous nanoarchitecture | 543/0.1/100 302/2/500 th | ~320/2 | 63.5%/0.1 | SIB | [30]/2022 |
CoSe2@NC/rGO-5 | Two-step co-precipitation+ pyrolysis | Sandwich-like | 527.5/0.1/100 th 226/0.5/400 th | 206/5 157/10 | 72.6%/0.1 | PIB | [138]/2021 |
Sample | Synthesis Method | Structure | Cycle Performance x | Rate Performance (mAh g−1, A g−1) | Initial Coulombic Efficiency (%, A g−1) | Battery Type | Ref./Year |
---|---|---|---|---|---|---|---|
CoTe2–C | Annealing | Polyhedron | 500/0.1/200 th 480/1/200 th | 386/3 | 70.52%/0.1 56.07%/0.1 | LIB SIB | [52]/2020 |
CoTe2@3DG | Annealing | Polyhedron + rGO | 191/0.05/350 th 103/1/4500 th | 169/2 | 66.7%/0.05 | SIB | [139]/2023 |
CoTe2@NMCNFs | Electrospinning + annealing | Carbon fiber network | 261.2/0.2/300 th 143.5/2/4000 th | 152.4/10 | 57.1%/0.2 | SIB | [47]/2021 |
CoTe2@3DPNC | Annealing | Dual-type carbon | 216.5/0.2/200 th | 164.2/5 | 87.6%/0.2 | SIB | [140]/2022 |
o–P–CoTe2 /MXene | Solvothermal annealing | MXene | 373.7/0.2/200 th 232.3/2/2000 th | 168.2/20 | 72.9%/0.05 | PIB | [38]/2021 |
CTNRs/rGO | One-pot solvothermal | Nanorods/rGO | 306/0.05/100 th | 176/2 | 56%/0.05 | SIB | [141]/2019 |
CoTe2–C | Spray pyrolysis | Microsphere | 295.8/0.2/100 th | 163.7/2 | 69.2%/0.2 | PIB | [142]/2020 |
Cu–Co1−xSe2 @NC | Chemical etching tellurization | Hollow nanoboxes | 796/1/800 th | ~400/5 | ~80%/1 | LIB | [71]/2022 |
CoTe2/G | One-pot solvothermal | Nanosheets | 356/0.05/100 th | 246/5 | 78.1%/0.05 | SIB | [42]/2018 |
ZnTe/CoTe2 @NC | Annealing | Bimetallic heterostructure | 317.5/0.5/1000 th 254.5/2/2000 th 165.2/5/5000 th | 190.2/5 | 58.3%/0.1 | PIB | [40]/2022 |
o/h–CoTe2 | One-step hydrothermal | Submicron-sized rods | 807/0.12/200 th 438/0.6/400 th | 305.8/3 | 75.2%/0.12 | LIB | [93]/2023 |
CoTe@NCD | Simultaneous pyrolysis–tellurium melt impregnation | Carbon dodecahedra | 300/0.1/100 th 200/0.1/100 th | 207/2 58/2 | 57%/0.1 50%/0.05 | SIB PIB | [129]/2022 |
CoTe2@NPCNFs@NC | Electrospinning | N-doped porous carbon nanofibers | 409.1/0.05/50 th 198/0.5/600 th 120/2/1000 th | 148.9/2 | 57.2%/0.05 | PIB | [41]/2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, Z.; Qu, D.; Han, D.; Niu, L. Recent Advances in CoSex and CoTex Anodes for Alkali-ion Batteries. Coatings 2023, 13, 1588. https://doi.org/10.3390/coatings13091588
Zhang Y, Sun Z, Qu D, Han D, Niu L. Recent Advances in CoSex and CoTex Anodes for Alkali-ion Batteries. Coatings. 2023; 13(9):1588. https://doi.org/10.3390/coatings13091588
Chicago/Turabian StyleZhang, Yuqi, Zhonghui Sun, Dongyang Qu, Dongxue Han, and Li Niu. 2023. "Recent Advances in CoSex and CoTex Anodes for Alkali-ion Batteries" Coatings 13, no. 9: 1588. https://doi.org/10.3390/coatings13091588
APA StyleZhang, Y., Sun, Z., Qu, D., Han, D., & Niu, L. (2023). Recent Advances in CoSex and CoTex Anodes for Alkali-ion Batteries. Coatings, 13(9), 1588. https://doi.org/10.3390/coatings13091588