A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity
Abstract
:1. Introduction
2. Principle
3. Research Progress of Optical Fiber Fabry–Perot Cavity Sensors
3.1. Pressure Sensor
3.2. Magnetic Field Sensor
3.3. Refractive Index Sensing
3.4. Humidity Sensor
3.5. Gas Detection
3.6. Temperature Sensor
3.7. Biological or Medical Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.H.; Loock, H.-P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 2008, 33, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Yam, S.S.H.; Loock, H.-P. Single-mode fiber refractive index sensor based on core-offset attenuators. IEEE Photonics Technol. Lett. 2008, 20, 1387–1389. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.Y.; Park, K.S.; Park, S.J.; Paek, U.-C.; Lee, B.H.; Choi, E.S. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer. Opt. Lett. 2008, 33, 2455–2457. [Google Scholar] [CrossRef]
- Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.-C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2010, 18, 141–149. [Google Scholar] [CrossRef]
- Dong, X.; Tam, H.Y.; Shum, P. Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett. 2007, 90, 151113. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.Y.; Tam, H.Y.; Shao, L.-Y.; Dong, X.; Wai, P.K.A.; Lu, C.; Khijwania, S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008, 47, 2835–2839. [Google Scholar] [CrossRef]
- Wang, W. Fabry-Perot Interference Fiber Acoustic Wave Sensor Based on Laser Welding All-Silica Glass. Materials 2022, 15, 2484. [Google Scholar] [CrossRef]
- Ruan, J. High sensitivity Sagnac interferometric strain sensor based polarization maintaining fibre enhanced coupling. IET Optoelectron. 2021, 15, 48–51. [Google Scholar] [CrossRef]
- Tian, J.; Zuo, Y.; Hou, M.; Jiang, Y. Magnetic field measurement based on a fiber laser oscillation circuit merged with a polarization-maintaining fiber Sagnac interference structure. Opt. Express 2021, 29, 8763–8769. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhao, C.; Kang, J.; Wang, D. Characteristic study on volatile organic compounds optical fiber sensor with zeolite thin film-coated spherical end. Opt. Fiber Technol. 2017, 34, 91–97. [Google Scholar] [CrossRef]
- Li, J.-X.; Tong, Z.-R.; Jing, L.; Zhang, W.-H.; Qin, J.; Liu, J.-W. Fiber temperature and humidity sensor based on photonic crystal fiber coated with graphene oxide. Opt. Commun. 2020, 467, 134–139. [Google Scholar] [CrossRef]
- Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.W.; Tao, J.; Huang, X.G. Research Progress on F-P InterferenceBased Fiber-Optic Sensors. Sensors 2016, 16, 1424. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.-J.; Ran, Z.-L.; Gong, Y. Fiber-Optic Fabry-Perot Sensors: An Introduction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wang, X.; Jiang, J.; Wang, S.; Liu, K.; Liu, T. All-silicon dual-cavity fiber-optic pressure sensor with ultralow pressure-temperature cross-sensitivity and wide working temperature range. Photonics Res. 2021, 9, 521–529. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, M.; Yan, W.; Li, Z.; Yang, F. Si-grating-assisted SPR sensor with high figure of merit based on Fabry-Perot cavity. Opt. Commun. 2020, 457, 124641. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Li, Y.; Li, Y.; Liu, Y.; Li, Y.; Qu, S. Detection limit analysis of optical fiber sensors based on interferometers with the Vernier-effect. Opt. Express 2022, 30, 35734–35748. [Google Scholar] [CrossRef]
- Duguay, M.A.; Kokubun, Y.; Koch, T.L.; Pfeiffer, L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett. 1986, 49, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Litchinitser, N.M.; Abeeluck, A.K.; Headley, C.; Eggleton, B.J. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett. 2002, 27, 1592–1594. [Google Scholar] [CrossRef]
- Hou, M.; Zhu, F.; Wang, Y.; Wang, Y.; Liao, C.; Liu, S.; Lu, P. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing. Opt. Express 2016, 24, 27890–27898. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Lu, D.-F.; Cheng, J.; Jiang, Y.; Jiang, L.; Qi, Z.-M. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide. Sens. Actuators B Chem. 2016, 222, 618–624. [Google Scholar] [CrossRef]
- Rosolem, J.B.; Penze, R.S.; Floridia, C.; Bassan, F.R.; Peres, R.; de Costa, E.F.; de Araujo Silva, A.; Coral, A.D.; Junior, J.R.N.; Vasconcelos, D.; et al. Dynamic Effects of Temperature on FBG Pressure Sensors Used in Combustion Engines. IEEE Sens. J. 2021, 21, 3020–3027. [Google Scholar] [CrossRef]
- Vaddadi, V.S.C.S.; Parne, S.R.; Afzulpurkar, S.; Desai, S.P.; Parambil, V.V. Design and development of pressure sensor based on Fiber Bragg Grating (FBG) for ocean applications. Eur. Phys. J. Appl. Phys. 2020, 90, 30501. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, F.; Chen, Y.; Han, Z.; Zeng, Z.; Liu, C.; Yang, X.; Li, L.; Zhang, J. Characteristics of a capillary single core fiber based on SPR for hydraulic pressure sensing. Opt. Commun. 2023, 530, 129125. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Q.-L.; Zhang, Y.-N. Simultaneous measurement of salinity, temperature and pressure in seawater using optical fiber SPR sensor. Measurement 2019, 148, 106792. [Google Scholar] [CrossRef]
- Reja, M.I.; Nguyen, L.V.; Ebendorff-Heidepriem, H.; Warren-Smith, S.C. Multipoint pressure sensing at up to 900 °C using a fiber optic multimode interferometer. Opt. Fiber Technol. 2023, 75, 103157. [Google Scholar] [CrossRef]
- Pang, Y.-N.; Liu, B.; Liu, J.; Wan, S.-P.; Wu, T.; Yuan, J.; Xin, X.; He, X.-D.; Wu, Q. Singlemode-Multimode-Singlemode Optical Fiber Sensor for Accurate Blood Pressure Monitoring. J. Light. Technol. 2022, 40, 4443–4450. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, H.; Li, J.; Zhou, A. Cascaded fiber MZIs for simultaneous measurement of pressure and temperature. Opt. Fiber Technol. 2021, 66, 102629. [Google Scholar] [CrossRef]
- Lei, X.; Dong, X.; Lu, C.; Sun, T.; Grattan, K.T.V. Underwater Pressure and Temperature Sensor Based on a Special Dual-Mode Optical Fiber. IEEE Access 2020, 8, 146463–146471. [Google Scholar] [CrossRef]
- Tada, H.; Kumpel, A.E.; Lathrop, R.E.; Slanina, J.B.; Nieva, P.; Zavracky, P.; Miaoulis, I.N.; Wong, P.Y. Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J. Appl. Phys. 2000, 87, 4189–4193. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Zhang, H.; Dong, M.; Zhu, L. All-Silica Diaphragm-based Optical Fiber Fabry-Perot Pressure Sensor Fabricated by CO2 Laser Melting Capillary End Face. Optik 2023, 287, 170994. [Google Scholar] [CrossRef]
- Wang, W.; Wu, N.; Tian, Y.; Niezrecki, C.; Wang, X. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm. Opt. Express 2010, 18, 9006–9014. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, J.; Du, C.; Wang, X. Highly Sensitive Miniature All-Silica Fiber Tip Fabry-Perot Pressure Sensor. IEEE Photonics Technol. Lett. 2019, 31, 689–692. [Google Scholar] [CrossRef]
- Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 2010, 19, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Schneider, F.; Draheirn, J.; Kamberger, R.; Wallrabe, U. Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sens. Actuators A Phys. 2009, 151, 95–99. [Google Scholar] [CrossRef]
- Liu, M.; Sun, J.; Chen, Q. Influences of heating temperature on mechanical properties of polydimethylsiloxane. Sens. Actuators A Phys. 2009, 151, 42–45. [Google Scholar] [CrossRef]
- Luo, C.; Liu, X.; Liu, J.; Shen, J.; Li, H.; Zhang, S.; Hu, J.; Zhang, Q.; Wang, G.; Huang, M. An Optimized PDMS Thin Film Immersed Fabry-Perot Fiber Optic Pressure Sensor for Sensitivity Enhancement. Coatings 2019, 9, 290. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Song, X.; Li, C.; Hou, L.; Li, Z.; Li, Y.; Ran, L. Optical Fiber Gas Pressure Sensor Based on Polydimethylsiloxane Microcavity. J. Light. Technol. 2021, 39, 2988–2993. [Google Scholar] [CrossRef]
- Fu, D.; Liu, X.; Shang, J.; Sun, W.; Liu, Y. A Simple, Highly Sensitive Fiber Sensor for Simultaneous Measurement of Pressure and Temperature. IEEE Photonics Technol. Lett. 2020, 32, 747–750. [Google Scholar] [CrossRef]
- Ranjbar-Naeini, O.; Barandak, A.; Tahmasebi, M.; Pooladmast, A.; Latifi, H. Characterization the Effect of Pressure and Concentration of Acetone Gas on Micro Polymeric Curved Diaphragm Fabry Perot Optical Fiber Sensor. In Proceedings of the Optical Fiber Sensors, Lausanne, Switzerland, 24–28 September 2018; p. WF10. [Google Scholar]
- Endruweit, A.; Johnson, M.S.; Long, A.C. Curing of composite components by ultraviolet radiation: A review. Polym. Compos. 2006, 27, 119–128. [Google Scholar] [CrossRef]
- Priola, A.; Gozzelino, G.; Ferrero, F.; Malucelli, G. Properties of polymeric films obtained from u.v. cured poly(ethylene glycol) diacrylates. Polymer 1993, 34, 3653–3657. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, Y.; Liang, D.; Zhang, Y.; Guo, J.; Lian, S.; Yu, Y.; Du, C.; Ruan, S. Fiber-Tip Fabry-Perot Cavity Pressure Sensor with UV-Curable Polymer Film Based on Suspension Curing Method. IEEE Sens. J. 2022, 22, 6651–6660. [Google Scholar] [CrossRef]
- Liu, L.; Lu, P.; Wang, S.; Fu, X.; Sun, Y.; Liu, D.; Zhang, J.; Xu, H.; Yao, Q. UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing. IEEE Photonics J. 2016, 8, 6800709. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, Q.; Hu, J.; Zhao, Y.; Gao, H.; Shen, J.; Li, C. An optical fiber pressure sensor with ultra-thin epoxy film and high sensitivity characteristics based on blowing bubble method. IEEE Photonics J. 2021, 13, 6800510. [Google Scholar] [CrossRef]
- Oliveira, R.; Bilro, L.; Nogueira, R.; Rocha, A.M. Adhesive Based Fabry-Perot Hydrostatic Pressure Sensor with Improved and Controlled Sensitivity. J. Light. Technol. 2019, 37, 1909–1915. [Google Scholar] [CrossRef]
- Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Ma, J.; Jin, W.; Ho, H.L.; Dai, J.Y. High-sensitivity fiber-tip pressure sensor with graphene diaphragm. Opt. Lett. 2012, 37, 2493–2495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Q.; Thakur, P.; Rablau, C.; Avrutsky, I.; Cheng, M.M.-C. Miniature Optical Fiber Pressure Sensor with Exfoliated Graphene Diaphragm. IEEE Sens. J. 2019, 19, 5621–5631. [Google Scholar] [CrossRef]
- Ge, Y.; Shen, L.; Sun, M. Temperature Compensation for Optical Fiber Graphene Micro-Pressure Sensor Using Genetic Wavelet Neural Networks. IEEE Sens. J. 2021, 21, 24195–24201. [Google Scholar] [CrossRef]
- Ni, W.; Lu, P.; Liu, D.; Zhang, J. Graphene Diaphragm-based Extrinsic Fabry-Perot Interferometer for Low Frequency Acoustic Sensing. In Proceedings of the Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, 31 July–4 August 2017. [Google Scholar]
- Cai, J.; Wang, G.; Wu, Y.; Gao, Z.; Qiu, Z. Extrinsic Optical Fiber Pressure Sensor Based on FP Cavity. Instrum. Mes. Métrol. 2020, 19, 43–49. [Google Scholar]
- Guo, F.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 2012, 37, 1505–1507. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Deng, S.; Li, M.; Wen, X.; Lu, H. Fabry-Perot acoustic sensor based on a thin gold diaphragm. Opt. Eng. 2020, 59, 064105. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Feng, Z.; Shi, J.; Wang, C.; Li, D.; Yao, H.; Li, C.; Kang, R.; Li, L.; et al. Preliminary Strain Measurement in High Field Superconducting Magnets with Fiber Bragg Grating. IEEE Trans. Appl. Supercond. 2022, 32, 9001105. [Google Scholar] [CrossRef]
- Odenbach, S. Recent progress in magnetic fluid research. J. Phys. Condens. Matter 2004, 16, R1135. [Google Scholar] [CrossRef]
- Philip, J. Magnetic nanofluids: Recent advances, applications, challenges, and future directions. Adv. Colloid Interface Sci. 2022, 311, 102810. [Google Scholar] [CrossRef]
- Zhang, R.; Pu, S.; Li, Y.; Zhao, Y.; Jia, Z.; Yao, J.; Li, Y. Mach-Zehnder interferometer cascaded with FBG for simultaneous measurement of magnetic field and temperature. IEEE Sens. J. 2019, 19, 4079–4083. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, X.; Zhang, L.; Hu, Y.; Duan, J.A. High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 2022, 249, 168234. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, Y.; Zhu, F.; Qi, K. In-line Michelson interferometer based on microspherical structure for magnetic field applications. In Proceedings of the Optical and Quantum Sensing and Precision Metrology, Online Only, 5 March 2021; pp. 146–151. [Google Scholar]
- Xiong, Z.; Guan, C.; Duan, Z.; Cheng, T.; Ye, P.; Yang, J.; Shi, J.; Yang, J.; Yuan, L.; Grattan, K.T.V. All-optical vector magnetic field sensor based on a side-polished two-core fiber Michelson interferometer. Opt. Express 2022, 30, 22746–22754. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, T.; Deng, C.; Zhang, X.; Pang, F.; Bai, X.; Dong, W.; Wang, L.; Chen, Z. A Highly Sensitive Intensity-Modulated Optical Fiber Magnetic Field Sensor Based on the Magnetic Fluid and Multimode Interference. J. Sens. 2017, 2017, 9573061. [Google Scholar] [CrossRef]
- Ning, Y.; Zhang, Y.; Guo, H.; Zhang, M.; Zhang, Y.; Li, S.; Liu, Z.; Zhang, J.; Yang, X.; Yuan, L. Optical Fiber Magnetic Field Sensor Based on Silk Fibroin Hydrogel. IEEE Sens. J. 2022, 22, 14878–14882. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.-X.; Lv, R.-Q.; Zheng, H.-K.; Zhou, Y.-F.; Chen, M.-Q. Reflective highly sensitive Fabry–Pérot magnetic field sensor based on magneto-volume effect of magnetic fluid. IEEE Trans. Instrum. Meas. 2021, 70, 7003506. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhao, Y.; Lv, R.-Q.; Zheng, H.-K.; Cai, L. Magnetic Field Measurement Method Based on the Magneto-Volume Effect of Hollow Core Fiber Filled with Magnetic Fluid. IEEE Trans. Instrum. Meas. 2021, 70, 9513708. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.-X.; Lv, R.-Q.; Li, G.-L.; Zheng, H.-K.; Zhou, Y.-F. Highly Sensitive Reflective Fabry-Perot Magnetic Field Sensor Using Magnetic Fluid Based on Vernier Effect. IEEE Trans. Instrum. Meas. 2021, 70, 7000808. [Google Scholar] [CrossRef]
- Hocking, L.M.; Rivers, A.D. The spreading of a drop by capillary action. J. Fluid Mech. 1982, 121, 425–442. [Google Scholar] [CrossRef]
- Sun, B.; Bai, M.; Ma, X.; Wang, X.; Zhang, Z.; Zhang, L. Magnetic-Based Polydimethylsiloxane Cap for Simultaneous Measurement of Magnetic Field and Temperature. J. Light. Technol. 2022, 40, 2625–2630. [Google Scholar] [CrossRef]
- Zhou, B.; Lu, C.; Mao, B.-M.; Tam, H.-Y.; He, S. Magnetic field sensor of enhanced sensitivity and temperature self-calibration based on silica fiber Fabry-Perot resonator with silicone cavity. Opt. Express 2017, 25, 8108–8114. [Google Scholar] [CrossRef]
- Xu, J.; Huang, K.; Zheng, J.; Li, J.; Pei, L.; You, H.; Ning, T. Sensitivity enhanced magnetic field sensor based on hollow core fiber Fabry-Perot interferometer and vernier effect. IEEE Photonics J. 2022, 14, 6841205. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, S.; Yang, P.; Wei, W.; Bao, W.; Peng, B. High-sensitivity and high extinction ratio fiber strain sensor with temperature insensitivity by cascaded MZI and FPI. Opt. Express 2023, 31, 7073–7089. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, K.; Hao, P.; Zhou, W.; Wu, Y.; Xuan, M. Bent optical fiber taper for refractive index detection with a high sensitivity. Sens. Actuators A Phys. 2013, 201, 352–356. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Q.; Liu, T.; Liu, F.; Yao, Y. Simultaneous measurement of refractive index and temperature using a cascaded FBG/droplet-like fiber structure. IEEE Sens. J. 2015, 15, 6432–6436. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Wu, Y.; Mao, Y.; Zhao, L.; Sun, T.; Nan, T.; Han, Y. Temperature insensitive fiber Fabry-Perot/Mach-Zehnder hybrid interferometer based on photonic crystal fiber for transverse load and refractive index measurement. Opt. Fiber Technol. 2020, 56, 102163. [Google Scholar] [CrossRef]
- Xia, F.; Zhao, Y. RI sensing system with high sensitivity and large measurement range using a microfiber MZI and a photonic crystal fiber MZI. Measurement 2020, 156, 107603. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q. Refractive index sensitivity enhancement of optical fiber SPR sensor utilizing layer of MWCNT/PtNPs composite. Opt. Fiber Technol. 2019, 51, 118–124. [Google Scholar] [CrossRef]
- Teng, C.; Shao, P.; Li, S.; Li, S.; Liu, H.; Deng, H.; Chen, M.; Yuan, L.; Deng, S. Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature. Opt. Commun. 2022, 525, 128844. [Google Scholar] [CrossRef]
- Liang, W.; Huang, Y.; Xu, Y.; Lee, R.K.; Yariv, A. Highly sensitive fiber Bragg grating refractive index sensors. Appl. Phys. Lett. 2005, 86, 151122. [Google Scholar] [CrossRef]
- Upadhyay, C.; Dhawan, D. Fiber Bragg grating refractive index sensor based on double D-shaped fiber. Opt. Quantum Electron. 2023, 55, 271. [Google Scholar] [CrossRef]
- Ran, Z.; Rao, Y.; Zhang, J.; Liu, Z.; Xu, B. A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip. J. Light. Technol. 2009, 27, 5426–5429. [Google Scholar]
- Quan, M.; Lu, Z.; Tian, J.; Yao, Y. Refractive index Fabry–Perot interferometric fiber sensor based on a microporous silver diaphragm and silica tube. In Proceedings of the Asia Communications and Photonics Conference, Hong Kong, China, 19–23 November 2015; p. ASu2A.47. [Google Scholar]
- Majchrowicz, D.; Hirsch, M.; Wierzba, P.; Bechelany, M.; Viter, R.; Jedrzejewska-Szczerska, M. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Perot Sensing Interferometers. Sensors 2016, 16, 416. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, Y.; Yang, D.; Wang, Y.; Fu, H.; Jia, Z.; Gao, H. Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature. Opt. Fiber Technol. 2019, 49, 64–70. [Google Scholar] [CrossRef]
- Ujah, E.; Lai, M.; Slaughter, G. Ultrasensitive tapered optical fiber refractive index glucose sensor. Sci. Rep. 2023, 13, 4495. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-D.; Liu, B.; Liu, J.; Fu, Y.; Wang, M.; Wan, S.-P.; He, X.; Yuan, J.; Chan, H.-P.; Wu, Q. Sensing Characteristics of Fiber Fabry-Perot Sensors Based on Polymer Materials. IEEE Access 2020, 8, 171316–171324. [Google Scholar] [CrossRef]
- Guo, J.-Y.; Shi, B.; Sun, M.-Y.; Zhang, C.-C.; Wei, G.-Q.; Liu, J. Characterization of an ORMOCER®-coated FBG sensor for relative humidity sensing. Measurement 2021, 171, 108851. [Google Scholar] [CrossRef]
- Riza, M.A.; Go, Y.I.; Harun, S.W.; Anas, S.B.A. Optimal etching process and cladding dimension for improved coating of porous hemispherical ZnO nanostructure on FBG humidity sensor. Laser Phys. 2023, 33, 075901. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zou, F.; Jiang, C.; Mou, C.; Wang, T. Humidity Sensor Based on a Long-Period Fiber Grating Coated with Polymer Composite Film. Sensors 2019, 19, 2263. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Feng, J.; Ge, J.; Chen, J.; Wang, F.; Xiang, C.; Wang, D.; Yu, Q.; Zeng, H. Highly sensitive humidity sensor based on a GO/Co-MOF-74 coated long period fiber grating. IEEE Photonics Technol. Lett. 2021, 34, 77–80. [Google Scholar] [CrossRef]
- Zhang, J.; Tong, Z.; Zhang, W.; Zhao, Y.; Liu, Y. Research on NCF-PCF-NCF Structure Interference Characteristic for Temperature and Relative Humidity Measurement. IEEE Photonics J. 2021, 13, 7100805. [Google Scholar] [CrossRef]
- Gao, P.; Zheng, X.; Liu, Y.; Wang, Z. Monitoring relative humidity using a Mach-Zehnder interferometer (MZI) senor based upon a photonic crystal fiber (PCF) coated with polyvinyl alcohol (PVA). Instrum. Sci. Technol. 2023, 51, 198–208. [Google Scholar] [CrossRef]
- Hu, P.; Dong, X.; Ni, K.; Chen, L.H.; Wong, W.C.; Chan, C.C. Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper. Sens. Actuators B Chem. 2014, 194, 180–184. [Google Scholar] [CrossRef]
- Shao, M.; Sun, H.; Liang, J.; Han, L.; Feng, D. In-fiber Michelson interferometer in photonic crystal fiber for humidity measurement. IEEE Sens. J. 2020, 21, 1561–1567. [Google Scholar] [CrossRef]
- Ali, U.; Abd Karim, K.J.B.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Cui, J.; Chen, G.; Li, J. PMMA-coated SMF-CLF-SMF-cascaded fiber structure and its humidity sensing characteristics. Appl. Phys. B 2022, 128, 36. [Google Scholar] [CrossRef]
- Li, M.; Ma, C.; Li, D.; Bao, S.; Jin, J.; Zhang, Y.; Liu, Q.; Liu, M.; Zhang, Y.; Li, T.; et al. Dual-parameter optical fiber sensor for temperature and humidity based on PMMA-microsphere and FBG composite structure. Opt. Fiber Technol. 2023, 78, 103292. [Google Scholar] [CrossRef]
- Meng, J.; Ma, J.-N.; Li, J.; Yan, H.; Meng, F. Humidity sensing and temperature response performance of polymer gel cold-spliced optical fiber Fabry-Perot interferometer. Opt. Fiber Technol. 2022, 68, 102823. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, T.; Duan, D.-W.; Deng, M. Nanocomposite polyacrylamide based open cavity fiber Fabry-Perot humidity sensor. Appl. Opt. 2012, 51, 7643–7647. [Google Scholar] [CrossRef]
- Chen, H.; You, T.; Xu, G.; Gao, Y.; Zhang, C.; Yang, N.; Yin, P. Humidity-responsive nanocomposite of gold nanoparticles and polyacrylamide brushes grafted on Ag film: Synthesis and application as plasmonic nanosensor. Sci. China Mater. 2018, 61, 1201–1208. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhou, B.; Jiang, H.; He, S. Agarose Filled Fabry-Perot Cavity for Temperature Self-Calibration Humidity Sensing. IEEE Photonics Technol. Lett. 2016, 28, 2027–2030. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer. Opt. Express 2013, 21, 6313–6320. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.-L.; Liu, J.; Shi, J.; He, X.-D.; Yuan, J.; Pike, A.R.; Chu, L.; Wu, Q.; Liu, B. Compact fiber Fabry-Perot sensors filled with PNIPAM hydrogel for highly sensitive relative humidity measurement. Measurement 2022, 201, 111781. [Google Scholar] [CrossRef]
- Li, S.; Hernandez, S.; Salazar, N. Biopolymer-Based Hydrogels for Harvesting Water from Humid Air: A Review. Sustainability 2023, 15, 848. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Zhu, W.; Yang, M. Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer. IEEE Photonics Technol. Lett. 2018, 30, 833–836. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, X.; Li, Y.; Qin, Z.; Pang, Y.; Liu, Z. Simultaneous measurement of relative humidity and temperature based on forward Brillouin scattering in polyimide-overlaid fiber. Sens. Actuators B Chem. 2021, 348, 130702. [Google Scholar] [CrossRef]
- Vaz, A.; Barroca, N.; Ribeiro, M.; Pereira, A.; Frazao, O. Optical Fiber Humidity Sensor Based on Polyvinylidene Fluoride Fabry-Perot. IEEE Photonics Technol. Lett. 2019, 31, 549–552. [Google Scholar] [CrossRef]
- Yu, C.; Gong, H.; Zhang, Z.; Ni, K.; Zhao, C. Temperature-Compensated High-Sensitivity Relative Humidity Sensor Based on Band-Pass Filtering and Vernier Effect. IEEE Trans. Instrum. Meas. 2022, 71, 7001808. [Google Scholar] [CrossRef]
- Lakouraj, M.M.; Tajbakhsh, M.; Mokhtary, M. Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran. Polym. J. 2005, 14, 1022–1030. [Google Scholar]
- Gomes, A.D.; Bartelt, H.; Frazao, O. Optical Vernier Effect: Recent Advances and Developments. Laser Photonics Rev. 2021, 15, 2000588. [Google Scholar] [CrossRef]
- Huang, C.; Xie, W.; Yang, M.; Dai, J.; Zhang, B. Optical Fiber Fabry-Perot Humidity Sensor Based on Porous Al2O3 Film. IEEE Photonics Technol. Lett. 2015, 27, 2127–2130. [Google Scholar] [CrossRef]
- Peng, J.; Wang, W.; Qu, Y.; Sun, T.; Lv, D.; Dai, J.; Yang, M. Thin films based one-dimensional photonic crystal for humidity detection. Sens. Actuators A Phys. 2017, 263, 209–215. [Google Scholar] [CrossRef]
- Li, C.; Yu, X.; Zhou, W.; Cui, Y.; Liu, J.; Fan, S. Ultrafast miniature fiber-tip Fabry-Perot humidity sensor with thin graphene oxide diaphragm. Opt. Lett. 2018, 43, 4719–4722. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zheng, M.; Li, H.; Ma, L.; Shen, W. High-performance humidity sensors based on high-field anodized porous alumina films. Nanotechnology 2009, 20, 395501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.; Zhang, A.P.; Ma, G.; Wang, B.; Kim, B.; Im, J.; He, S.; Chung, Y. Fiber-Optic Acetylene Gas Sensor Based on Microstructured Optical Fiber Bragg Gratings. IEEE Photonics Technol. Lett. 2011, 23, 1588–1590. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Y.; Qiao, C.; Liu, L.; Jia, Y. A novel low-cost gas sensor for CO2 detection using polymer-coated fiber Bragg grating. Sens. Actuators B Chem. 2021, 332, 129482. [Google Scholar] [CrossRef]
- Yang, F.; Jin, W.; Lin, Y.; Wang, C.; Lut, H.; Tan, Y. Hollow-core microstructured optical fiber gas sensors. J. Light. Technol. 2017, 35, 3413–3424. [Google Scholar] [CrossRef]
- Liu, C.; Chen, H.; Chen, Q.; Zheng, Y.; Gao, Z.; Fan, X.; Wu, B.; Shum, P.P. An ultra-high sensitivity methane gas sensor based on Vernier effect in two parallel optical fiber Sagnac loops. Opt. Commun. 2023, 540, 129509. [Google Scholar] [CrossRef]
- Hao, T.; Chiang, K.S. Graphene-Based Ammonia-Gas Sensor Using In-Fiber Mach-Zehnder Interferometer. IEEE Photonics Technol. Lett. 2017, 29, 2035–2038. [Google Scholar] [CrossRef]
- Feng, X.; Feng, W.; Tao, C.; Deng, D.; Qin, X.; Chen, R. Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sens. Actuators B Chem. 2017, 247, 540–545. [Google Scholar] [CrossRef]
- He, S.; Liu, Y.; Feng, W.; Li, B.; Yang, X.; Huang, X. Carbon monoxide gas sensor based on an α-Fe2O3/reduced graphene oxide quantum dots composite film integrated Michelson interferometer. Meas. Sci. Technol. 2021, 33, 035102. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, X.; Feng, W. Carbon monoxide gas sensor based on Co/Ni-MOF-74 coated no-core-fiber Michelson interferometer. Phys. Scr. 2023, 98, 015012. [Google Scholar] [CrossRef]
- Ma, W.; Wang, R.; Rong, Q.; Shao, Z.; Zhang, W.; Guo, T.; Wang, J.; Qiao, X. CO2 Gas Sensing Using Optical Fiber Fabry-Perot Interferometer Based on Polyethyleneimine/Poly (Vinyl Alcohol) Coating. IEEE Photonics J. 2017, 9, 6802808. [Google Scholar] [CrossRef]
- Helberg, R.M.L.; Dai, Z.; Ansaloni, L.; Deng, L. PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance. Green Energy Environ. 2020, 5, 59–68. [Google Scholar] [CrossRef]
- Ma, W.; Xing, J.; Wang, R.; Rong, Q.; Zhang, W.; Li, Y.; Zhang, J.; Qiao, X. Optical fiber Fabry–Perot interferometric CO2 gas sensor using guanidine derivative polymer functionalized layer. IEEE Sens. J. 2018, 18, 1924–1929. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface. Sensors 2021, 21, 378. [Google Scholar] [CrossRef]
- Peng, J.; Feng, W.; Yang, X.; Huang, G.; Liu, S. Dual Fabry-Perot Interferometric Carbon Monoxide Sensor Based on the PANI/Co3O4 Sensitive Membrane-Coated Fibre Tip. Z. Fur Naturforsch. Sect. A 2019, 74, 101–107. [Google Scholar] [CrossRef]
- Pawar, D.; Rao, B.V.B.; Kale, S.N. Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: Study using an optical fiber Fabry-Perot interferometer. Analyst 2018, 143, 1890–1898. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Lopez-Aldaba, A.; Elostia Aguado, C.; Auguste, J.-L.; Jamier, R.; Roy, P.; Lopez-Amo, M.; Arregui, F.J. Sensitivity Optimization of a Microstructured Optical Fiber Ammonia Gas Sensor by Means of Tuning the Thickness of a Metal Oxide Nano-Coating. IEEE Sens. J. 2019, 19, 4982–4991. [Google Scholar] [CrossRef]
- Bochenkov, V.; Sergeev, G. Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. Met. Oxide Nanostruct. Their Appl. 2010, 3, 31–52. [Google Scholar]
- Feng, Z.; Cheng, Y.; Chen, M.; Yuan, L.; Hong, D.; Li, L. Temperature-Compensated Multi-Point Strain Sensing Based on Cascaded FBG and Optical FMCW Interferometry. Sensors 2022, 22, 3970. [Google Scholar] [CrossRef] [PubMed]
- Eid, M.M.; Seliem, A.S.; Rashed, A.Z.; Mohammed, A.E.-N.A.; Ali, M.Y.; Abaza, S.S. High sensitivity sapphire FBG temperature sensors for the signal processing of data communications technology. Indones. J. Electr. Eng. Comput. Sci. 2021, 21, 1567–1574. [Google Scholar] [CrossRef]
- Munoz-Hernandez, T.; Reyes-Vera, E.; Torres, P. Temperature Sensor Based on Whispering Gallery Modes of Metal-Filled Side-Hole Photonic Crystal Fiber Resonators. IEEE Sens. J. 2020, 20, 9170–9178. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Zhang, X.; Zhang, Q.; Wang, T. Recent progress of in-fiber WGM microsphere resonator. Front. Optoelectron. 2023, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Pan, P.; Xie, T.; Fu, H. Sensitivity enhanced fiber optic temperature sensor based on optical carrier microwave photonic interferometry with harmonic Vernier effect. Opt. Laser Technol. 2023, 160, 109029. [Google Scholar] [CrossRef]
- Li, X.; Tan, J.; Li, W.; Yang, C.; Tan, Q.; Feng, G. A high-sensitivity optical fiber temperature sensor with composite materials. Opt. Fiber Technol. 2022, 68, 102821. [Google Scholar] [CrossRef]
- Shao, M.; Zhang, R.; Gao, H.; Liu, Y.; Qiao, X.; Lin, Y. A High-Sensitivity Low-Temperature Sensor Based on Michelson Interferometer in Seven-Core Fiber. IEEE Photonics Technol. Lett. 2021, 33, 1293–1296. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Niu, P.; Wu, S.; Liu, S.; Jin, R.-B.; Lu, P.; Hu, X.; Dai, N. Fiber tip Michelson interferometer for temperature sensing based on polymer-filled suspended core fiber. Optics & Laser Technology 2021, 141, 107147. [Google Scholar]
- Yin, J.; Liu, T.; Jiang, J.; Liu, K.; Wang, S.; Qin, Z.; Zou, S. Batch-Producible Fiber-Optic Fabry-Perot Sensor for Simultaneous Pressure and Temperature Sensing. IEEE Photonics Technol. Lett. 2014, 26, 2070–2073. [Google Scholar]
- Liu, T.; Yin, J.; Jiang, J.; Liu, K.; Wang, S.; Zou, S. Differential-pressure-based fiber-optic temperature sensor using Fabry-Perot interferometry. Opt. Lett. 2015, 40, 1049–1052. [Google Scholar] [CrossRef]
- Pan, R.; Yang, W.; Li, L.; Yang, Y.; Zhang, L.; Yu, X.; Fan, J.; Yu, S.; Xiong, Y. A High-Sensitive Fiber-Optic Fabry-Perot Sensor with Parallel Polymer-Air Cavities Based on Vernier Effect for Simultaneous Measurement of Pressure and Temperature. IEEE Sens. J. 2021, 21, 21577–21585. [Google Scholar] [CrossRef]
- Zhang, S.; Mei, Y.; Xia, T.; Cao, Z.; Liu, Z.; Li, Z. Simultaneous measurement of temperature and pressure based on Fabry-Perot Interferometry for marine monitoring. Sensors 2022, 22, 4979. [Google Scholar] [CrossRef] [PubMed]
- Defas-Brucil, R.; Cano-Velazquez, M.S.; Velazquez-Benitez, A.M.; Hernandez-Cordero, J. Microbubble end-capped fiber-optic Fabry-Perot sensors. Opt. Lett. 2022, 47, 5569–5572. [Google Scholar] [CrossRef] [PubMed]
- Dean, L.M.; Ravindra, A.; Guo, A.X.; Yourdkhani, M.; Sottos, N.R. Photothermal Initiation of Frontal Polymerization Using Carbon Nanoparticles. ACS Appl. Polym. Mater. 2020, 2, 4690–4696. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.; Li, S.; Yan, X.; Zhang, X.; Wang, F.; Suzuki, T.; Ohishi, Y.; Cheng, T. A miniature optical fiber Fabry–Perot interferometer temperature sensor based on tellurite glass. IEEE Trans. Instrum. Meas. 2021, 70, 7005706. [Google Scholar] [CrossRef]
- Mohanna, Y.; Saugrain, J.-M.; Rousseau, J.-C.; Ledoux, P. Relaxation of internal stresses in optical fibers. J. Light. Technol. 1990, 8, 1799–1802. [Google Scholar] [CrossRef]
- Liao, Y.; Liu, Y.; Li, Y.; Lang, C.; Cao, K.; Qu, S. Large-Range, Highly-Sensitive, and Fast-Responsive Optical Fiber Temperature Sensor Based on the Sealed Ethanol in Liquid State Up to its Supercritical Temperature. IEEE Photonics J. 2019, 11, 6803112. [Google Scholar] [CrossRef]
- Scott, T.A., Jr. Refractive index of ethanol-water mixtures and density and refractive index of ethanol-water-ethyl ether mixtures. J. Phys. Chem. 1946, 50, 406–412. [Google Scholar] [CrossRef]
- Wang, B.; Niu, Y.; Zheng, S.; Yin, Y.; Ding, M. A high temperature sensor based on sapphire fiber Fabry-Perot interferometer. IEEE Photonics Technol. Lett. 2019, 32, 89–92. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, Y.; Zhang, Y.; Feng, X.; Hu, J.; Jiang, L. An all-sapphire fiber temperature sensor for high-temperature measurement. Meas. Sci. Technol. 2022, 33, 105115. [Google Scholar] [CrossRef]
- Lupi, C.; Felli, F.; Ippoliti, L.; Caponero, M.; Ciotti, M.; Nardelli, V.; Paolozzi, A. Metal coating for enhancing the sensitivity of fibre Bragg grating sensors at cryogenic temperature. Smart Mater. Struct. 2005, 14, N71. [Google Scholar] [CrossRef]
- Lupi, C.; Felli, F.; Brotzu, A.; Caponero, M.A.; Paolozzi, A. Improving FBG sensor sensitivity at cryogenic temperature by metal coating. IEEE Sens. J. 2008, 8, 1299–1304. [Google Scholar] [CrossRef]
- Yang, J.; Yin, B.; Dong, X.; Huang, W.; Zou, Y. Ultrasensitive Cryogenic Temperature Sensor Based on a Metalized Optical Fiber Fabry-Perot Interferometer. J. Light. Technol. 2022, 40, 5729–5735. [Google Scholar] [CrossRef]
- Kaushik, S.; Tiwari, U.; Nilima; Prashar, S.; Das, B.; Sinha, R.K. Label-free detection of Escherichia coli bacteria by cascaded chirped long period gratings immunosensor. Rev. Sci. Instrum. 2019, 90, 025003. [Google Scholar] [CrossRef] [PubMed]
- Eftimov, T.; Janik, M.; Koba, M.; Smietana, M.; Mikulic, P.; Bock, W. Long-Period Gratings and Microcavity In-Line Mach Zehnder Interferometers as Highly Sensitive Optical Fiber Platforms for Bacteria Sensing. Sensors 2020, 20, 3772. [Google Scholar] [CrossRef]
- Sirkis, T.; Beiderman, Y.; Agdarov, S.; Beiderman, Y.; Zalevsky, Z. Fiber sensor for non-contact estimation of vital bio-signs. Opt. Commun. 2017, 391, 63–67. [Google Scholar] [CrossRef]
- Yu, C.; Xu, W.; Zhang, N.; Yu, C. Non-invasive smart health monitoring system based on optical fiber interferometers. In Proceedings of the 16th International Conference on Optical Communications and Networks (ICOCN), Wuzhen, China, 7–10 August 2017. [Google Scholar]
- Gasparyan, V.K.; Bazukyan, I.L. Lectin sensitized anisotropic silver nanoparticles for detection of some bacteria. Anal. Chim. Acta 2013, 766, 83–87. [Google Scholar] [CrossRef]
- Arcas, A.d.S.; Dutra, F.d.S.; Allil, R.C.; Werneck, M.M. Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors. Sensors 2018, 18, 648. [Google Scholar] [CrossRef] [Green Version]
- Queiros, R.B.; Silva, S.O.; Noronha, J.P.; Frazao, O.; Jorge, P.; Aguilar, G.; Marques, P.V.S.; Sales, M.G.F. Microcystin-LR detection in water by the Fabry-Perot interferometer using an optical fibre coated with a sol-gel imprinted sensing membrane. Biosens. Bioelectron. 2011, 26, 3932–3937. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.H.; Chan, C.C.; Menon, R.; Balamurali, P.; Wong, W.C.; Ang, X.M.; Hu, P.B.; Shaillender, M.; Neu, B.; Zu, P.; et al. Fabry-Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane. Sens. Actuators B Chem. 2013, 188, 185–192. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, M.; Dong, T.; Sui, Q.; Geng, X. Label-Free Immunosensor Based on Optical Fiber Fabry-Perot Interferometer. IEEE Sens. J. 2016, 16, 7515–7520. [Google Scholar] [CrossRef]
- Li, Y.; Dong, B.; Chen, E.; Wang, X.; Zhao, Y.; Zhao, W.; Wang, Y. Breathing process monitoring with a biaxially oriented polypropylene film based fiber Fabry-Perot sensor. Opt. Commun. 2020, 475, 126292. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Gunawardena, D.S.; Liu, Z.; Tam, H.-Y. Microstructured optical fiber based Fabry-Perot interferometer as a humidity sensor utilizing chitosan polymeric matrix for breath monitoring. Sci. Rep. 2020, 10, 6002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergeev, A.; Voznesenskiy, S. Specific features of chitosan waveguides optical response formation to changes in the values of relative humidity. Opt. Mater. 2015, 43, 33–35. [Google Scholar] [CrossRef]
- Li, X.; Li, F.; Zhou, X.; Zhang, Y.; Linh Viet, N.; Warren-Smith, S.C.; Zhao, Y. Optical Fiber DNA Biosensor with Temperature Monitoring Based on Double Microcavities FabryPerot Interference and Vernier Combined Effect. IEEE Trans. Instrum. Meas. 2023, 72, 7001208. [Google Scholar]
- Zou, X.; Wu, N.; Tian, Y.; Ouyang, J.; Barringhaus, K.; Wang, X. Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements. IEEE Sens. J. 2013, 13, 2155–2160. [Google Scholar] [CrossRef]
- Viphavakit, C.; O’Keeffe, S.; Yang, M.; Andersson-Engels, S.; Lewis, E. Gold Enhanced Hemoglobin Interaction in a Fabry-Perot Based Optical Fiber Sensor for Measurement of Blood Refractive Index. J. Light. Technol. 2018, 36, 1118–1124. [Google Scholar] [CrossRef]
- Li, Y.; Dong, B.; Chen, E.; Wang, X.; Zhao, Y. Heart-Rate Monitoring with an Ethyl Alpha-Cyanoacrylate Based Fiber Fabry-Perot Sensor. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 5600206. [Google Scholar] [CrossRef]
Material | Sensitivity | Test Range | Reference |
---|---|---|---|
Silicon | 9.48 pm/kPa | 0~200 kPa | [34] |
11 nm/kPa | 0~100 kPa | [35] | |
12.4 nm/kPa | 6.9~48.3 kPa | [36] | |
PDMS | 100 pm/kPa | 100~175 kPa | [42] |
52.143 nm/Mpa | 0.1~0.7 Mpa | [43] | |
20.63 nm/Mpa | 0~2 MPa | [44] | |
55 pm/mBar | 0~50 mBar | [45] | |
UV | 395 pm/kPa | 0~30 kPa | [48] |
57.3 mV/Pa | 21.4 mPa~3.56 Pa | [49] | |
AB epoxy glue | 263.15 pm/kPa | 100.0 ~400.0 kPa | [50] |
Graphene | 39.4 nm/kPa | 0~5 kPa | [54] |
1.28 nm/mmHg | 0~100 mmHg | [55] | |
Silver | 1.6 nm/kPa | 0~50 psi | [59] |
Gold | 19.5 nm/kPa | 0~100 kPa | [60] |
Material | Sensitivity (pm/mT) | Test Range (mT) | Reference |
---|---|---|---|
MF | 2688.1 | 1.55~13.97 | [70] |
−42,191.5 | 10.96~12.58 | [71] | |
10,260.2 | 11.8768~16.6261 | [72] | |
Mn3O4-PDMS | 563.2 | 0~4 | [74] |
Magnetic alloy | −34.83 | 0~70 | [75] |
Terfenol-D | 14.6 | 10~30 | [76] |
−7530 | 4~10 | [77] |
Material | Sensitivity (nm/RIU) | Reference |
---|---|---|
SiO/TiO | 1130.887 | [86] |
Silver | 1025 | [87] |
UV | 156.8 | [89] |
UV88 | 24.678 | [91] |
NOA68 | 81.096 | [91] |
Loctite 3525 | 34.395 | [91] |
Material | Sensitivity (nm/%RH) | Range (%RH) | Reference |
---|---|---|---|
PMMA | 0.1747 | 25~80 | [101] |
0.127 | 35~85 | [102] | |
0.4172 | 10~70 | [102] | |
PAM | 0.1 | 38~78 | [104] |
5.868 | 88~98 | [104] | |
Agarose gel | 0.0225 | 43~63 | [106] |
PNIPAM | 1.634 | 45~75 | [108] |
POLYIMIDE | 0.02207 | 20~90 | [110] |
PVDF | 0.03254 | 20~80 | [112] |
PVA | 0.001454 | 35~85 | [113] |
PAA | 0.31 | 20~90 | [116] |
Graphene oxide | 0.2 | 10~90 | [118] |
Material | Sensitivity (pm/ppm) | Range (ppm) | Reference |
---|---|---|---|
PEI/PVA | 0.281 | 76,000~869,000(CO2) | [128] |
PHMB | 1.22 | 0–700 (CO2) | [130] |
PCG | 21.61 | 0~70 (CO) | [132] |
G-FPI FG-FPI | 25 | 0~150 (NH3) | [133] |
36 | 0~150 (NH3) | [133] |
Material | Sensitivity | Test Range | Reference |
---|---|---|---|
Silicon | 142.02 nm/°C | −20~70 °C | [144] |
6.07 nm/°C | −50~100 °C | [145] | |
PDMS | 10.29 nm/°C | 44~49 °C | [146] |
62 pm/°C | 20~170 °C | [148] | |
PI | 18.910 nm/°C | 24~43 °C | [147] |
Ethanol | −497.6 pm/°C | 20~180 °C | [152] |
Sapphire | 20.63 pm/°C(at 500 °C) | 25~1550 °C | [154] |
26.25 pm/°C (at 1000 °C) | 25~1550 °C | [154] | |
32.45 pm/°C (at 1550 °C) | 25~1550 °C | [154] | |
Cu/Al2O3 | 2.10 nm/K | 5.367~15.069 K | [158] |
1.95 nm/K | 15~50 K | [158] | |
7.73 nm/K | 96.5~142.69 K | [158] | |
5.33 nm/K | 150.19~200.36 K | [158] | |
4.35 nm/K | 250.18~290.98 K | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Peng, D.; Bai, X.; Liu, S.; Luo, L. A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity. Coatings 2023, 13, 1277. https://doi.org/10.3390/coatings13071277
Ma C, Peng D, Bai X, Liu S, Luo L. A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity. Coatings. 2023; 13(7):1277. https://doi.org/10.3390/coatings13071277
Chicago/Turabian StyleMa, Chaoqun, Donghong Peng, Xuanyao Bai, Shuangqiang Liu, and Le Luo. 2023. "A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity" Coatings 13, no. 7: 1277. https://doi.org/10.3390/coatings13071277
APA StyleMa, C., Peng, D., Bai, X., Liu, S., & Luo, L. (2023). A Review of Optical Fiber Sensing Technology Based on Thin Film and Fabry–Perot Cavity. Coatings, 13(7), 1277. https://doi.org/10.3390/coatings13071277