RETRACTED: Influence of DETA on Thermal and Corrosion Protection Properties of GPTMS-TEOS Hybrid Coatings on Q215 Steel
Abstract
:1. Introduction
2. Preparation of Hybrid Coatings
2.1. Materials
2.2. Preparation of GPTMS-TEOS Hybrid Coatings
2.3. Characterization
3. Results and Discussion
3.1. Gelation Time of GPTMS-TEOS Hybrid Coatings
3.2. Structural and Morphological Characteristics of GPTMS-TEOS Hybrid Coatings
3.3. Thermal Stability of GPTMS-TEOS Hybrid Coatings
3.4. Anti-Corrosion Performance of GPTMS-TEOS Hybrid Coatings
3.5. Anticorrosion Mechanism of GPTMS-TEOS Hybrid Coatings
3.6. Salt Spray Test of GPTMS-TEOS Hybrid Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashrafi-Shahri, S.M.; Ravari, F.; Seifzadeh, D. Smart organic/inorganic sol-gel nanocomposite containing functionalized mesoporous silica for corrosion protection. Prog. Org. Coat. 2019, 133, 44–54. [Google Scholar] [CrossRef]
- Hou, B.; Li, X.; Ma, X.; Du, C.; Zhang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. NPJ Mater. Degrad. 2017, 1, 4. [Google Scholar] [CrossRef]
- Yang, Y.S.; Khan, F.; Thodi, P.; Abbassi, R. Corrosion Induced Failure Analysis of Subsea Pipeline. Reliab. Eng. Syst. Saf. 2017, 159, 214–222. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, S.; Ganjoo, R.; Assad, H.; Kumar, A. Anti-Corrosive Potential of the Sustainable Corrosion Inhibitors Based on Biomass Waste: A Review on Preceding and Perspective Research. J. Phys. Conf. Ser. 2022, 2267, 012079. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Jannesari, A.; Ranjbar, Z.; Sobhani, S.; Saeb, M.R. Anti-corrosion hybrid coatings based on epoxy-silica nano-composites: Toward relationship between the morphology and EIS data. Prog. Org. Coat. 2014, 77, 1169–1183. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.R. Sol-gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Hamulic, D.; Rodic, P.; Milosev, I. The influence of length of alkyl chain on the chemical structure and corrosion resistance of silica-polyacrylic hybrid coatings on structural steel. Prog. Org. Coat. 2021, 150, 105982. [Google Scholar] [CrossRef]
- Palanivel, V.; Zhu, D.Q.; van Ooji, W.J. Nanoparticle-filled silane films as chromate replacements for aluminum alloys. Prog. Org. Coat. 2003, 47, 384–392. [Google Scholar] [CrossRef]
- Brusciotti, F.; Batan, A.; De Graeve, I.; Wenkin, M.; Biessemans, M.; Willem, R.; Reniers, F.; Pireaux, J.J.; Piens, M.; Vereecken, J.; et al. Characterization of thin water-based silane pre-treatments on aluminium with the incorporation of nano-dispersed CeO2 particles. Surf. Coat. Technol. 2010, 205, 603–613. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Salvado, I.M.M.; Ferreira, M.G.S. Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3. Surf. Coat. Technol. 2006, 200, 3084–3094. [Google Scholar] [CrossRef]
- Maeztu, J.D.; Rivero, P.J.; Berlanga, C.; Bastidas, D.M.; Palacio, J.F.; Rodriguez, R. Effect of graphene oxide and fluorinated polymeric chains incorporated in a multilayered sol-gel nanocoating for the design of corrosion resistant and hydrophobic surfaces. Appl. Surf. Sci. 2017, 419, 138–149. [Google Scholar] [CrossRef]
- Eduok, U.; Suleiman, R.; Khaled, M.; Akid, R. Enhancing water repellency and anticorrosion properties of a hybrid silica coating on mild steel. Prog. Org. Coat. 2016, 93, 97–108. [Google Scholar] [CrossRef]
- Im, H.G.; Park, H.Y.; Kang, D.J. Class-II-type nanosilica-epoxy hybrid coating with high moisture barrier performance and mechanical robustness. Prog. Org. Coat. 2019, 126, 136–141. [Google Scholar] [CrossRef]
- Li, Q.; Guo, L.; Qiu, T.; Xiao, W.; Du, D.; Li, X. Synthesis of waterborne polyurethane containing alkoxysilane side groups and the properties of the hybrid coating films. Appl. Surf. Sci. 2016, 377, 66–74. [Google Scholar] [CrossRef]
- Suriano, R.; Ciapponi, R.; Griffini, G.; Levi, M.; Turri, S. Fluorinated zirconia-based sol-gel hybrid coatings on polycarbonate with high durability and improved scratch resistance. Surf. Coat. Technol. 2017, 311, 80–89. [Google Scholar] [CrossRef]
- Brusciotti, F.; Snihirova, D.V.; Xue, H.; Montemor, M.F.; Lamaka, S.V.; Ferreira, M.G.S. Hybrid epoxy-silane coatings for improved corrosion protection of Mg alloy. Corros. Sci. 2013, 67, 82–90. [Google Scholar] [CrossRef]
- Vollet, D.R.; Barreiro, L.A.; Awano, C.M.; de Vicente, F.S.; Yoshida, M.; Donatti, D.A. Rod-like particles growing in sol-gel processing of 1:1 molar mixtures of 3-glycidoxypropyltrimethoxysilane and tetraethoxysilane. J. Appl. Crystallogr. 2017, 50, 489–497. [Google Scholar] [CrossRef]
- Innocenzi, P.; Figus, C.; Kidchob, T.; Valentini, M.; Alonso, B.; Takahashi, M. Sol-gel reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution. Dalton Trans. 2009, 42, 9142–9156. [Google Scholar] [CrossRef]
- Gizdavic-Nikolaidis, M.R.; Edmonds, N.R.; Bolt, C.J.; Easteal, A.J. Structure and properties of GPTMS/DETA and GPTMS/EDA hybrid polymers. Curr. Appl. Phys. 2008, 8, 300–303. [Google Scholar] [CrossRef]
- Zomorodian, A.; Brusciotti, F.; Fernandes, A.; Carmezim, M.J.; Silva, T.M.E.; Fernandes, J.C.S.; Montemor, M.F. Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf. Coat. Technol. 2012, 206, 4368–4375. [Google Scholar] [CrossRef]
- Jia, Z.Z.; Hong, R.Y. Anticorrosive and photocatalytic properties research of epoxy-silica organic–inorganic coating. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126647. [Google Scholar] [CrossRef]
- Peng, S.S.; Zeng, Z.X.; Zhao, W.J.; Chen, J.M.; Han, J.; Wu, X.D. Performance evaluation of mercapto functional hybrid silica sol–gel coating on copper surface. Surf. Coat. Technol. 2014, 251, 135–142. [Google Scholar] [CrossRef]
- Rozenberg, B.A. Kinetics, Thermodynamics and Mechanism of Reactions of Epoxy Oligomers with Amines. Adv. Polym. Sci. 1986, 75, 113–165. [Google Scholar] [CrossRef]
- Matsuoka, J.; Numaguchi, M.; Yoshida, S.; Soga, N. Heat of reaction of the hydrolysis-polymerization process of tetraethyl orthosilicate in acidic condition. J. Sol-Gel. Sci. Technol. 2000, 19, 661–664. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A. Investigating the effect of SiO2-graphene oxide hybrid as inorganic nanofiller on corrosion protection properties of epoxy coatings. Surf. Coat. Technol. 2017, 311, 282–294. [Google Scholar] [CrossRef]
- Pathak, S.S.; Khanna, A.S. Synthesis and performance evaluation of environmentally compliant epoxysilane coatings for aluminum alloy. Prog. Org. Coat. 2008, 62, 409–416. [Google Scholar] [CrossRef]
- Hernández-Barrios, C.A.; Saavedra, J.A.; Higuera, S.L.; Coy, A.E.; Viejo, F. Effect of cerium on the physicochemical and anticorrosive features of TEOS-GPTMS sol-gel coatings deposited on the AZ31 magnesium alloy. Surf. Interfaces 2020, 21, 100671. [Google Scholar] [CrossRef]
- Ulaeto, S.B.; Rajan, R.; Pancrecious, J.K.; Rajan, T.P.D.; Pai, B.C. Developments in smart anticorrosive coatings with multifunctional characteristics. Prog. Org. Coat. 2017, 111, 294–314. [Google Scholar] [CrossRef]
- Torrico, R.F.A.O.; Harb, S.V.; Uvida, A.T.M.C.; Pulcinelli, S.H.; Santilli, C.V.; Hammer, P. Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection. J. Colloid Interface Sci. 2018, 513, 617–628. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Zakula, A.D.; Webster, D.C. Organic-inorganic hybrid coatings prepared from glycidyl carbamate resin, 3-aminopropyl trimethoxy silane and tetraethoxyorthosilicate. Prog. Org. Coat. 2009, 64, 128–137. [Google Scholar] [CrossRef]
- Haddadi, S.A.; Hu, S.J.; Ghaderi, S.; Ghanbari, A.; Ahmadipour, M.; Pung, S.Y.; Li, S.B.; Feilizadeh, M.; Arjmand, M. Amino-functionalized MXene nanosheets doped with Ce(III) as potent nanocontainers toward self-healing epoxy nanocomposite coating for corrosion protection of mild steel. ACS Appl. Mater. Interfaces 2021, 13, 42074–42093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Dou, B.J.; Shao, Y.W.; Cui, X.J.; Wang, Y.Q.; Meng, G.Z.; Lin, X.Z. Influence of phytic acid on the corrosion behavior of carbon steel with different surface treatments. Anti-Corros. Methods Mater. 2018, 65, 658–667. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Shao, Y.W.; Zhang, T.; Meng, G.Z.; Wang, F.H. The effect of epoxy coating containing emeraldine base and hydrofluoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy. Corros. Sci. 2011, 53, 3747–3755. [Google Scholar] [CrossRef]
- Chen, H.Y.; Fan, H.Z.; Su, N.; Hong, R.Y.; Lu, X.S. Highly hydrophobic polyaniline nanoparticles for anti-corrosion epoxy coatings. Chem. Eng. J. 2021, 420, 130540. [Google Scholar] [CrossRef]
- Duan, S.; Dou, B.J.; Lin, X.Z.; Zhao, S.X.; Emori, W.; Pan, J.L.; Hu, H.; Xiao, H. Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126836. [Google Scholar] [CrossRef]
- Ren, B.H.; Chen, Y.N.; Li, Y.Q.; Li, W.J.; Gao, S.Y.; Li, H.F.; Cao, R. Rational design of metallic anti-corrosion coatings based on zinc gluconate@ZIF-8, Chem. Eng. J. 2020, 384, 123389. [Google Scholar] [CrossRef]
- Rouw, A.C. Model epoxy powder coatings and their adhesion to steel. Prog. Org. Coat. 1998, 34, 181–192. [Google Scholar] [CrossRef]
- Wu, Y.M.; Jiang, F.W.; Qiang, Y.J.; Zhao, W.J. Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings. Carbon 2021, 176, 39–51. [Google Scholar] [CrossRef]
- Lv, X.D.; Li, X.T.; Li, N.; Zhang, H.C.; Zheng, Y.Z.; Wu, J.J.; Tao, X. ZrO2 nanoparticle encapsulation of graphene microsheets for enhancing anticorrosion performance of epoxy coatings. Surf. Coat. Technol. 2019, 358, 443–451. [Google Scholar] [CrossRef]
- Liu, T.; Lia, J.Y.; Li, X.Y.; Qiu, S.H.; Ye, Y.W.; Yang, F.; Zhao, H.C. Effect of self-assembled tetraaniline nanofiber on the anticorrosion performance of waterborne epoxy coating. Prog. Org. Coat. 2019, 128, 137–147. [Google Scholar] [CrossRef]
- Costenaro, H.; Lanzutti, A.; Paint, Y.; Fedrizzi, L.; Terada, M.; de Meloa, H.G.; Olivier, M.-G. Corrosion resistance of 2524 Al alloy anodized in tartaric-sulphuric acid at different voltages and protected with a TEOS-GPTMS hybrid sol-gel coating. Surf. Coat. Technol. 2017, 324, 438–450. [Google Scholar] [CrossRef]
- Peres, R.N.; Cardoso, E.S.F.; Montemor, M.F.; de Melo, H.G.; Benedetti, A.V.; Suegama, P.H. Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection. Surf. Coat. Technol. 2016, 303, 372–384. [Google Scholar] [CrossRef]
- Ammar, S.; Ramesh, K.; Ma, I.A.W.; Farah, Z.; Vengadaesvaran, B.; Ramesh, S.; Arof, A.K. Studies on SiO2-hybrid polymeric nanocomposite coatings with superior corrosion protection and hydrophobicity. Surf. Coat. Technol. 2017, 324, 536–545. [Google Scholar] [CrossRef]
- Picard, L.; Phalip, P.; Fleury, E.; Ganachaud, F. Chemical adhesion of silicone elastomers on primed metal surfaces: A comprehensive survey of open and patent literatures. Prog. Org. Coat. 2015, 80, 120–141. [Google Scholar] [CrossRef]
Samples (Rx) | R0.2 | R0.4 | R0.5 | R1 | R2 | R3 |
---|---|---|---|---|---|---|
X = NH/epoxy | 0.2 | 0.4 | 0.5 | 1 | 2 | 3 |
Samples | Rs (Ω·cm2) | Qc | Rc (Ω·cm2) | Qdl | Rct (Ω·cm2) | ||
---|---|---|---|---|---|---|---|
Y0 (F·cm−2) | N | Y0 (F·cm−2) | n | ||||
Q215 | 6.5 | / | / | / | 6.48 × 10−4 | 0.782 | 386 |
R0.2 | 1.74 | 7.82 × 10−6 | 0.619 | 1.783 × 104 | 9.62 × 10−5 | 0.828 | 8.63 × 103 |
R0.4 | 1.65 | 2.39 × 10−5 | 0.371 | 6.46 × 103 | 4.84 × 10−5 | 0.851 | 2.31 × 103 |
R0.5 | 2.12 | 2.16 × 10−9 | 0.800 | 9.94 × 103 | 6.93 × 10−5 | 0.800 | 7.61 × 104 |
R1 | 2.03 | 1.79 × 10−9 | 0.954 | 3.86 × 104 | 5.56 × 10−5 | 0.763 | 4.56 × 106 |
R2 | 3.12 | 3.93 × 10−9 | 0.915 | 2.79 × 104 | 3.97 × 10−5 | 0.813 | 1.49 × 106 |
R3 | 7.41 | 5.84 × 10−5 | 0.383 | 1.79 × 104 | 1.78 × 10−4 | 0.844 | 9.64 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Jia, Z.; Xu, J.; Hong, R. RETRACTED: Influence of DETA on Thermal and Corrosion Protection Properties of GPTMS-TEOS Hybrid Coatings on Q215 Steel. Coatings 2023, 13, 1145. https://doi.org/10.3390/coatings13071145
Yang S, Jia Z, Xu J, Hong R. RETRACTED: Influence of DETA on Thermal and Corrosion Protection Properties of GPTMS-TEOS Hybrid Coatings on Q215 Steel. Coatings. 2023; 13(7):1145. https://doi.org/10.3390/coatings13071145
Chicago/Turabian StyleYang, Shuanqiang, Zhenzhen Jia, Jinjia Xu, and Ruoyu Hong. 2023. "RETRACTED: Influence of DETA on Thermal and Corrosion Protection Properties of GPTMS-TEOS Hybrid Coatings on Q215 Steel" Coatings 13, no. 7: 1145. https://doi.org/10.3390/coatings13071145
APA StyleYang, S., Jia, Z., Xu, J., & Hong, R. (2023). RETRACTED: Influence of DETA on Thermal and Corrosion Protection Properties of GPTMS-TEOS Hybrid Coatings on Q215 Steel. Coatings, 13(7), 1145. https://doi.org/10.3390/coatings13071145