Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boice, J., Jr.; Dauer, L.T.; Kase, K.R.; Mettler, F.A., Jr.; Vetter, R.J. Evolution of radiation protection for medical workers. Br. J. Radiol. 2020, 93, 20200282. [Google Scholar] [CrossRef]
- Shang, Y.; Yang, G.; Su, F.; Feng, Y.; Ji, Y.; Liu, D.; Yin, R.; Liu, C.; Shen, C. Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos. Commun. 2020, 19, 147–153. [Google Scholar] [CrossRef]
- Yao, B.; Hong, W.; Chen, T.; Han, Z.; Xu, X.; Hu, R.; Hao, J.; Li, C.; Li, H.; Perini, S.E.; et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, e1907499. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, W.; Zhang, X.; Gao, Y.; Guo, S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Sci. Rep. 2021, 11, 4384. [Google Scholar] [CrossRef] [PubMed]
- Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Fabrication, characterization and gamma rays shielding properties of Nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173. [Google Scholar] [CrossRef]
- Ghosh, S.; Remanan, S.; Mondal, S.; Ganguly, S.; Das, P.; Singha, N.; Das, N.C. An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 2018, 344, 138–154. [Google Scholar] [CrossRef]
- Hemath, M.; Mavinkere Rangappa, S.; Kushvaha, V.; Dhakal, H.N.; Siengchin, S. A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym. Compos. 2020, 41, 3940–3965. [Google Scholar] [CrossRef]
- John, A.; Benny, L.; Cherian, A.R.; Narahari, S.Y.; Varghese, A.; Hegde, G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review. J. Nanostruct. Chem. 2021, 11, 1–31. [Google Scholar] [CrossRef]
- Weulersse, C.; Houssany, S.; Guibbaud, N.; Segura-Ruiz, J.; Beaucour, J.; Miller, F.; Mazurek, M. Contribution of thermal neutrons to soft error rate. IEEE Trans. Nucl. Sci. 2018, 65, 1851–1857. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, T.; Yuan, L.; Fang, Q.; Wang, X.; Guo, X.; Zhang, D.; Lai, C.; Wang, Q.; Liu, Y. A comparative study between pure bismuth/tungsten and the bismuth tungsten oxide for flexible shielding of gamma/X rays. Radiat. Phys. Chem. 2023, 208, 110906. [Google Scholar] [CrossRef]
- Chala, T.F.; Wu, C.M.; Chou, M.H.; Gebeyehu, M.B.; Cheng, K.B. Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 2017, 7, 191. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Bhawal, P.; Ravindren, R.; Das, N.C. Polymer nanocomposites for electromagnetic interference shielding: A review. J. Nanosci. Nanotechnol. 2018, 18, 7641–7669. [Google Scholar] [CrossRef]
- Bhat, A.; Budholiya, S.; Aravind Raj, S.; Sultan, M.T.H.; Hui, D.; Md Shah, A.U.; Safri, S.N.A. Review on nanocomposites based on aerospace applications. Nanotechnol. Rev. 2021, 10, 237–253. [Google Scholar] [CrossRef]
- Al-Mezrakchi, R.Y.H. An investigation into scalability production of ultra-fine nanofiber using electrospinning systems. Fibers Polym. 2018, 19, 105–115. [Google Scholar] [CrossRef]
- Jian, S.; Zhu, J.; Jiang, S.; Chen, S.; Fang, H.; Song, Y.; Duan, G.; Zhang, Y.; Hou, H. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 2018, 8, 4794–4802. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef]
- Mansouri, E.; Mesbahi, A.; Malekzadeh, R.; Mansouri, A. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: Effect of particle size, photon energy and nano-particle concentration. Radiat. Environ. Biophys. 2020, 59, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced radiation shielding with conformal light-weight nanoparticle–polymer composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, A.; Singh, D.; Thind, K.S.; Mudahar, G.S. Barium–borate–flyash glasses: As radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B. 2008, 266, 140–146. [Google Scholar] [CrossRef]
- Hamouda, S.A.; al-Talhi, E.; Abdelmalik, M.B. Calculation of Gamma-ray Mass Absorption Coefficients for some Geological Compounds for Energy of 10–150 keV. Eng. Sci. Int. J. 2021, 8, 39–41. [Google Scholar] [CrossRef]
- Jalali, M.; Mohammadi, A. Gamma ray attenuation coefficient measurement for neutron-absorbent materials. Radiat. Phys. Chem. 2008, 77, 523–527. [Google Scholar] [CrossRef]
- Akkurt, I.; El-Khayatt, A.M. The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 2013, 51, 5–9. [Google Scholar] [CrossRef]
- Sedira, N.; Castro-Gomes, J. Study of an alkali-activated binder based on tungsten mining mud and brick powder waste. In Proceedings of the MATEC Web Conference, EDP Sciences, Centre of Materials and Building Technologies; CIVE–Central covilhã–4082. University of Beira Interior: Covilhã, Portugal, 2018; Volume 163. [Google Scholar] [CrossRef]
- Arof, A.K.; Mat Nor, N.A.; Aziz, N.; Kufian, M.Z.; Abdulaziz, A.A.; Mamatkarimov, O.O. Investigation on morphology of composite poly(ethylene oxide)-cellulose nanofibers. Mater. Today Proc. 2019, 17, 388–393. [Google Scholar] [CrossRef]
- Kim, S.C. Development of air pressure mirroring particle dispersion method for producing high-density tungsten medical radiation shielding film. Sci. Rep. 2021, 11, 485. [Google Scholar] [CrossRef]
- Boonin, K.; Yasaka, P.; Limkitjaroenporn, P.; Rajaramakrishna, R.; Askin, A.; Sayyed, M.I.; Kothan, S.; Kaewkhao, J. Effect of BaO on lead free zinc barium tellurite glass for radiation shielding materials in nuclear application. J. Non Cryst. Solids 2020, 550, 120386. [Google Scholar] [CrossRef]
- AbuAlRoos, N.J.; Baharul Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Kiguli-Malwadde, E.; Byanyima, R.; Kawooya, M.G.; Mubuuke, A.G.; Basiimwa, R.C.; Pitcher, R. An audit of registered radiology equipment resources in Uganda. Pan Afr. Med. J. 2020, 37, 295. [Google Scholar] [CrossRef]
- Patidar, D.; Yap, L.B.C.; Begum, H.; Soh, B.P. Manual or auto-mode: Does this affect radiation dose in digital mammography without compromising image quality? Radiography 2022, 28, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Chusin, T.; Matsubara, K.; Takemura, A.; Okubo, R.; Ogawa, Y. Assessment of scatter radiation dose and absorbed doses in eye lens and thyroid gland during digital breast tomosynthesis. J. Appl. Clin. Med. Phys. 2019, 20, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, G.; Cozzi, A.; Schiaffino, S.; Sardanelli, F.; Caumo, F. Radiation dose of contrast-enhanced mammography: A two-center prospective comparison. Cancers 2022, 14, 1774. [Google Scholar] [CrossRef] [PubMed]
- Madder, R.D.; LaCombe, A.; VanOosterhout, S.; Mulder, A.; Elmore, M.; Parker, J.L.; Jacoby, M.E.; Wohns, D. Radiation exposure among scrub technologists and nurse circulators during cardiac catheterization: The impact of accessory lead shields. JACC Cardiovasc. Interv. 2018, 11, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.R.; Rabah, M.; Emerson, S.; Schultz, C.; Madder, R.D. A novel catheterization laboratory radiation shielding system: Results of pre-clinical testing. Cardiovasc. Revasc. Med. 2022, 36, 51–55. [Google Scholar] [CrossRef]
- Deeraj, B.D.S.; Jayan, J.S.; Raman, A.; Saritha, A.; Joseph, K. Polymeric blends and nanocomposites for high performance EMI shielding and microwave absorbing applications. Compos. Interfaces 2022, 29, 1505–1547. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, P.; Xu, H.; Li, Q.; Guo, J.; Liao, X.; Shi, B. Advanced X-ray shielding materials enabled by the coordination of well-dispersed high atomic number elements in natural leather. ACS Appl. Mater. Interfaces 2020, 12, 19916–19926. [Google Scholar] [CrossRef]
- Yao, T.; Chen, H.; Samal, P.; Giselbrecht, S.; Baker, M.B.; Moroni, L. Self-assembly of electrospun nanofibers into gradient honeycomb structures. Mater. Des. 2019, 168, 107614. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, P.; Shi, X.; Zhang, G.; Wang, C. Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer 2018, 156, 250–260. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Heng, Z.; Chen, Y.; Zou, H.; Liang, M. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Ind. Eng. Chem. Res. 2018, 57, 17152–17160. [Google Scholar] [CrossRef]
Transmission Dose | Effective X-ray Energy | ||||||||
---|---|---|---|---|---|---|---|---|---|
29.2 keV | 34.5 keV | 52.8 keV | 60.3 keV | ||||||
Non | N-Fibers | Non | N-Fibers | Non | N-Fibers | Non | N-Fibers | ||
P1 | Dose (mSv) | 0.295 | 0.0141 | 0.854 | 0.0521 | 1.117 | 0.1005 | 1.583 | 0.1708 |
Shielding rate (%) | 95.22 | 93.90 | 91.00 | 89.21 | |||||
P2 | Dose (mSv) | 0.295 | 0.0318 | 0.854 | 0.1175 | 1.117 | 0.2456 | 1.583 | 0.4686 |
Shielding rate (%) | 89.22 | 86.24 | 78.01 | 70.40 | |||||
P3 | Dose (mSv) | 0.295 | 0.0554 | 0.854 | 0.2298 | 1.117 | 0.3670 | 1.588 | 0.5928 |
Shielding rate (%) | 81.22 | 73.11 | 67.14 | 62.55 | |||||
P4 | Dose (mSv) | 0.295 | 0.0342 | 0.854 | 0.1185 | 1.117 | 0.2546 | 1.583 | 0.4874 |
Shielding rate (%) | 88.41 | 86.12 | 77.21 | 69.21 |
Radiation Type | Effective X-ray Energy (keV) | Mean of Exposure (mSv) | Shielding Rate (%) | |||
Nothing | 0.25 mm Pb | P1 (0.3 mm) | 0.25 mm Pb | P1 (0.3 mm) | ||
X-ray | 29.2 | 0.312 | 0.0022 | 0.0149 | 99.29 | 95.22 |
34.5 | 0.854 | 0.0418 | 0.0521 | 95.11 | 93.90 | |
52.8 | 1.212 | 0.0806 | 0.1091 | 93.35 | 91.00 | |
60.3 | 1.583 | 0.1539 | 0.1866 | 90.28 | 89.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C. Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials. Coatings 2023, 13, 1028. https://doi.org/10.3390/coatings13061028
Kim S-C. Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials. Coatings. 2023; 13(6):1028. https://doi.org/10.3390/coatings13061028
Chicago/Turabian StyleKim, Seon-Chil. 2023. "Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials" Coatings 13, no. 6: 1028. https://doi.org/10.3390/coatings13061028
APA StyleKim, S.-C. (2023). Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials. Coatings, 13(6), 1028. https://doi.org/10.3390/coatings13061028