Annealing Effect on Microstructure of Novel Ti Doped DLC Multilayer Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Preparation and Annealing Treatment
2.2. Characterization of the As-Deposited Films
3. Results
3.1. Surface Morphology and Chemical Composition of the As-Deposited Films
3.2. Phase Analysis of the As-Deposited Films
3.3. Microstructure Analysis of the As-Deposited Films
4. Conclusions
- (1)
- The surface morphology of the as-deposited films has no significant change below 600 °C. The surface roughness of the films (<12 nm) decreased after annealing. The roughness of the annealed films initially decreased and then increased with the temperature increases;
- (2)
- The formation of graphite carbon phase occurs and the diffraction peaks of TiC phase becomes more obvious above 600 °C. The films remained the nature of amorphous carbon structure up to 600 °C and oxidation occurred at 800 °C, indicating its high graphitization temperature and good thermal stability;
- (3)
- The D- and G-bands had no significant change below 200 °C, while the D- and G-bands gradually separated and the G-band showed a significant blue shift and the FWHMG exhibited a decreasing trend up to 600 °C, indicating a tending toward Raman characteristics of microcrystalline graphite.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. Rep. 2002, 37, 129–281. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, G.; Lu, Z.; Wu, Z.; Wang, Y.; Wang, L.; Yan, P. Tribological mechanism of hydrogenated amorphous carbon film against pairs: A physical description. J. Appl. Phys. 2011, 110, 033521. [Google Scholar] [CrossRef]
- Donnet, C.; Erdemir, A. Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 2004, 180–181, 76–84. [Google Scholar] [CrossRef]
- Robertson, J. Properties of diamond-like carbon. Surf. Coat. Technol. 1992, 50, 185–203. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, M.; Yang, Y.; Zhang, Y.; Yan, F.; Li, H. Excellent mechanical, tribological and anti-corrosive performance of novel Ti-DLC nanocomposite thin films prepared via magnetron sputtering method. Carbon 2019, 151, 136–147. [Google Scholar] [CrossRef]
- Al Mahmud, K.A.H.; Kalam, M.A.; Masjuki, H.H.; Mobarak, H.M.; Zulkifli, N.W.M. An updated overview of diamond-like carbon coating in tribology. Crit. Rev. Solid State Mater. Sci. 2014, 40, 90–118. [Google Scholar] [CrossRef]
- Bewilogua, K.; Hofmann, D. History of diamond-like carbon films—From first experiments to worldwide applications. Surf. Coat. Technol. 2014, 242, 214–225. [Google Scholar] [CrossRef]
- Grill, A. Diamond-like carbon: State of the art. Diam. Relat. Mater. 1999, 8, 428–434. [Google Scholar] [CrossRef]
- Hauert, R. A review of modified DLC coatings for biological applications. Diam. Relat. Mater. 2003, 12, 583–589. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39, R311–R327. [Google Scholar] [CrossRef]
- Aisenberg, S.; Chabot, R. Ion-Beam Deposition of Thin Films of Diamondlike Carbon. J. Appl. Phys. 1971, 42, 2953–2958. [Google Scholar] [CrossRef]
- Wu, W.-J.; Hon, M.-H. Thermal stability of diamond-like carbon films with added silicon. Surf. Coat. Technol. 1999, 111, 134–140. [Google Scholar] [CrossRef]
- Cho, Y.K.; Jang, W.S.; Yoo, S.; Kim, S.G.; Kim, S.W. Synthesis of conductive Ti–C:H films on the stainless steel plates by PECVD process. Surf. Coat. Technol. 2008, 202, 5390–5394. [Google Scholar] [CrossRef]
- Narayan, R.J. Pulsed laser deposition of functionally gradient diamondlike carbon–metal nanocomposites. Diam. Relat. Mater. 2005, 14, 1319–1330. [Google Scholar] [CrossRef]
- Weng, K.-W.; Chen, Y.-C.; Lin, T.-N.; Wang, D.-Y. Metal-doped diamond-like carbon films synthesized by filter-arc deposition. Thin Solid Films 2006, 515, 1053–1057. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Ting, J.-M. Growth and characteristics of metal-containing diamond-like carbon using a self-assembled process. Carbon 2006, 44, 1210–1217. [Google Scholar] [CrossRef]
- Vetter, J. 60 years of DLC coatings: Historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 2014, 257, 213–240. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, F.; Yang, Y.; Yan, M.; Zhang, Y.; Guo, J.; Li, H. Effects of sputtering gas on microstructure and tribological properties of titanium nitride films. Appl. Surf. Sci. 2019, 488, 61–69. [Google Scholar] [CrossRef]
- Souček, P.; Schmidtová, T.; Buršíková, V.; Vašina, P.; Pei, Y.T.; De Hosson, J.T.M.; Caha, O.; Peřina, V.; Mikšová, R.; Malinský, P. Tribological properties of nc-TiC/a-C:H coatings prepared by magnetron sputtering at low and high ion bombardment of the growing film. Surf. Coat. Technol. 2014, 241, 64–73. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, H.; Zeng, X.; Hing, P. Residual stress characterization of diamond-like carbon coatings by an X-ray diffraction method. Surf. Coat. Technol. 1999, 122, 219–224. [Google Scholar] [CrossRef]
- Friedmann, T.A.; McCarty, K.F.; Barbour, J.C.; Siegal, M.P.; Dibble, D.C. Thermal stability of amorphous carbon films grown by pulsed laser deposition. Appl. Phys. Lett. 1996, 68, 1643–1645. [Google Scholar] [CrossRef]
- Nakazawa, H.; Yamagata, Y.; Suemitsu, M.; Mashita, M. Thermal effects on structural properties of diamond-like carbon films prepared by pulsed laser deposition. Thin Solid Films 2004, 467, 98–103. [Google Scholar] [CrossRef]
- Sheeja, D.; Tay, B.K.; Lau, S.P.; Shi, X. Tribological properties and adhesive strength of DLC coatings prepared under different substrate bias voltages. Wear 2001, 249, 433–439. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of Diamond and Diamond-like Carbon Films: An Overview; Stachowiak, G.W., Ed.; Wear: Materials, Mechanisms and Practice; Wiley: London, UK, 2005; pp. 1–7. [Google Scholar] [CrossRef]
- Li, H.; Xu, T.; Wang, C.; Chen, J.; Zhou, H.; Liu, H. Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films. Thin Solid Films 2006, 515, 2153–2160. [Google Scholar] [CrossRef]
- Zhang, S.; Bui, X.L.; Li, X. Thermal stability and oxidation properties of magnetron sputtered diamond-like carbon and its nanocomposite coatings. Diam. Relat. Mater. 2006, 15, 972–976. [Google Scholar] [CrossRef]
- Fu, R.K.Y.; Mei, Y.F.; Fu, M.Y.; Liu, X.Y.; Chu, P.K. Thermal stability of metal-doped diamond-like carbon fabricated by dual plasma deposition. Diam. Relat. Mater. 2005, 14, 1489–1493. [Google Scholar] [CrossRef]
- Chen, X.; Peng, Z.; Fu, Z.; Wu, S.; Yue, W.; Wang, C. Microstructural, mechanical and tribological properties of tungsten-gradually doped diamond-like carbon films with functionally graded interlayers. Surf. Coat. Technol. 2011, 205, 3631–3638. [Google Scholar] [CrossRef]
- Bai, W.Q.; Li, L.L.; Wang, X.L.; He, F.F.; Liu, D.G.; Jin, G.; Tu, J.P. Effects of Ti content on microstructure, mechanical and tribological properties of Ti-doped amorphous carbon multilayer films. Surf. Coat. Technol. 2015, 266, 70–78. [Google Scholar] [CrossRef]
- Chiu, M.C.; Hsieh, W.P.; Ho, W.Y.; Wang, D.Y.; Shieu, F.S. Thermal stability of Cr-doped diamond-like carbon films synthesized by cathodic arc evaporation. Thin Solid Films 2005, 476, 258–263. [Google Scholar] [CrossRef]
- Osanai, H.; Nakamura, K.; Sasaki, Y.; Koriyama, H.; Kobayashi, Y.; Enta, Y.; Suzuki, Y.; Suemitsu, M.; Nakazawa, H. Effects of annealing temperature on the mechanical, optical, and electrical properties of hydrogenated, nitrogen-doped diamond-like carbon films. Thin Solid Films 2022, 745, 139100. [Google Scholar] [CrossRef]
- Martnez-Martnez, D.; Lpez-Carts, C.; Gago, R.; Fernndez, A.; Snchez-Lpez, J.C. Thermal Stability and Oxidation Resistance of Nanocomposite TiC/a-C Protective Coatings. Plasma Process. Polym. 2009, 6, S462–S467. [Google Scholar] [CrossRef]
- Dillon, R.O.; Woollam, J.A.; Katkanant, V. Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B 1984, 29, 3482–3489. [Google Scholar] [CrossRef]
- Chu, P.K.; Li, L. Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 2006, 96, 253–277. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter. 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Castiglioni, C.; Negri, F.; Rigolio, M.; Zerbi, G. Raman activation in disordered graphites of the A’1 symmetry forbidden k ≠ 0 phonon: The origin of the D line. J. Chem. Phys. 2001, 115, 3769–3778. [Google Scholar] [CrossRef]
- Castiglioni, C.; Di Donato, E.; Tommasini, M.; Negri, F.; Zerbi, G. Multi-wavelength Raman response of disordered graphitic materials: Models and simulations. Synth. Met. 2003, 139, 885–888. [Google Scholar] [CrossRef]
- Castiglioni, C.; Tommasini, M.; Zerbi, G. Raman spectroscopy of polyconjugated molecules and materials: Confinement effect in one and two dimensions. Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 2425–2459. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Orwa, J.O.; Andrienko, I.; Peng, J.L.; Prawer, S.; Zhang, Y.B.; Lau, S.P. Thermally induced sp2 clustering in tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 2004, 96, 6286–6297. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Lin, H.-D.; Liu, C.-K.; Huang, M.-W.; Chen, Y.-C.; Chen, J.-R.; Shih, H.C. Annealing effect on the structural, mechanical and electrical properties of titanium-doped diamond-like carbon films. Thin Solid Films 2009, 518, 1503–1507. [Google Scholar] [CrossRef]
- Khamnualthong, N.; Siangchaew, K.; Limsuwan, P. Thermal Stability Evaluation of Diamond-like Carbon for Magnetic Recording Head Application using Raman Spectroscopy. Procedia Eng. 2012, 32, 888–894. [Google Scholar] [CrossRef]
- Zhang, D.; Li, S.; Zuo, X.; Guo, P.; Ke, P.; Wang, A. Structural and mechanism study on enhanced thermal stability of hydrogenated diamond-like carbon films doped with Si/O. Diam. Relat. Mater. 2020, 108, 107923. [Google Scholar] [CrossRef]
STEP | Ti Target Current (A) | C Target Current (A) | Substrate Bias Voltage (−V) | Time (min) |
---|---|---|---|---|
Ion cleaning | 0.3 | 0 | 400 | 30 |
Ti layer | 5.5 | 0 | 70 | 30 |
Gradient layer | 5.5 → 0.4 a | 0 → 1.5 a | 70–65 b | 60 |
Composite layer | 0.4 | 1.5 | 65 | 120 |
DLC layer | 0.1 | 1.5 | 65 | 240 |
Content | C (at %) | Ti (at %) | O (at %) |
---|---|---|---|
Region A | 75.49 | 21.88 | 2.70 |
Region B | 75.21 | 21.99 | 2.80 |
Region C | 74.74 | 22.04 | 3.22 |
Region D | 74.41 | 21.95 | 3.64 |
Region E | 75.36 | 20.25 | 4.39 |
Annealing Temperature (°C) | RI | D Band | G Band | ||
---|---|---|---|---|---|
ID/IG (%) | Position/FWHM (cm−1) | Position/FWHM (cm−1) | |||
untreated | 132 | 1386 | 293 | 1569 | 153 |
200 | 95 | 1395 | 337 | 1584 | 101 |
400 | 101 | 1399 | 360 | 1584 | 98 |
500 | 95 | 1389 | 339 | 1588 | 92 |
600 | 83 | 1376 | 316 | 1589 | 89 |
800 | 118 | 1373 | 307 | 1590 | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jiang, G.; Yang, Y.; Li, H.; Yan, F.; Yan, M.; Zhang, Y. Annealing Effect on Microstructure of Novel Ti Doped DLC Multilayer Films. Coatings 2023, 13, 833. https://doi.org/10.3390/coatings13050833
Zhang S, Jiang G, Yang Y, Li H, Yan F, Yan M, Zhang Y. Annealing Effect on Microstructure of Novel Ti Doped DLC Multilayer Films. Coatings. 2023; 13(5):833. https://doi.org/10.3390/coatings13050833
Chicago/Turabian StyleZhang, Shidong, Guang Jiang, Yang Yang, Hongtao Li, Fuyao Yan, Mufu Yan, and Yanxiang Zhang. 2023. "Annealing Effect on Microstructure of Novel Ti Doped DLC Multilayer Films" Coatings 13, no. 5: 833. https://doi.org/10.3390/coatings13050833
APA StyleZhang, S., Jiang, G., Yang, Y., Li, H., Yan, F., Yan, M., & Zhang, Y. (2023). Annealing Effect on Microstructure of Novel Ti Doped DLC Multilayer Films. Coatings, 13(5), 833. https://doi.org/10.3390/coatings13050833