Effect of High-Temperature Annealing on Raman Characteristics of Silicon Nanowire Arrays
Abstract
1. Introduction
2. Experiments
2.1. Pretreatment of Si Wafers
2.2. Deposition of Noble Metal Films
2.3. Metal-Assisted Chemical Etching
2.4. Annealing Process
3. Raman Spectroscopy Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahoo, M.; Kale, P. Micro-raman study of growth parameter restraint for silicon nanowire synthesis using MACE. Superlattices Microstruct. 2019, 135, 106289. [Google Scholar] [CrossRef]
- Theresa, B.; Wendisch, F.J.; Farhandi, A.; Bourret, G.R. Recent advances in structuring and patterning silicon nanowire arrays for engineering light absorption in three dimensions. ACS Appl. Energy Mater. 2022, 5, 5307–5317. [Google Scholar]
- Sahoo, M.; Kale, P. Integration of silicon nanowires in solar cell structure for efficiency enhancementa review. J. Mater. 2019, 5, 34–48. [Google Scholar]
- Georgobiani, V.; Gonchar, K.; Zvereva, E.; Osminkina, L. Porous silicon nanowire arrays for reversible optical gas sensing. Phys. Status Solidi 2018, 215, 1700565. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, A.; Xing, S.; Li, L.; Cheng, W.; Li, J.; Mia, W.; Zhou, X.; Tian, L. Advances in self-powered ultraviolet photodetectors based on P-N heterojunction low-dimensional nanostructures. Nanomaterials 2022, 12, 910. [Google Scholar] [CrossRef]
- Miao, F.; Miao, R.; Wu, W.; Cong, W.; Zang, Y.; Tao, B. A stable hybrid anode of graphene/silicon nanowires array for high performance lithium-ion battery. Mater. Lett. 2018, 228, 262–265. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, H.; Wang, Y.; Liu, Y.; Le, T. A controllable fabrication improved silicon nanowire array sensor on (111) SOI for accurate bio-analysis application. Nano Res. 2022, 15, 7468–7475. [Google Scholar] [CrossRef]
- Farid, G.; Yang, Y.; Mateen, A.; Huo, C.; Wang, H.; Peng, K.-Q. Rapid formation of uniform cracks in metal-assisted etched silicon nanowire array membranes: Implications for transfer of nanowires and flexible devices. ACS Appl. Nano Mater. 2022, 5, 2779–2786. [Google Scholar] [CrossRef]
- Schweidler, S.; Dreyer, S.L.; Breitung, B.; Brezesinski, T. Acoustic emission monitoring of high-entropy oxyfluoride rock-salt cathodes during battery operation. Coatings 2022, 12, 402. [Google Scholar] [CrossRef]
- Dong, Y.; Mai, L.; Jin, S.; Girard, S.N.; Li, L.; Stolt, M.J.; Slade, T. Low temperature molten salt production of silicon nanowires by electrochemical reduction of CaSiO3. Angew. Chem. Int. Ed. 2017, 56, 14453–14457. [Google Scholar] [CrossRef]
- Okazoe, T.; Shirakawa, D.; Murata, K. Application of liquid-phase direct fluorination: Novel synthetic methods for a polyfluorinated coating material and a monomer of a perfluorinated polymer electrolyte membrane. Appl. Sci. 2012, 2, 327–341. [Google Scholar] [CrossRef]
- Sen, G.; Sanghyun, H.; Soohyung, P.; Jung, H.Y.; Liang, W.; Lee, Y.; Ahn, C.W.; Byun, J.Y.; Sep, J.; Hahm, M.G.; et al. Catalyst-free synthesis of sub-5 nm silicon nanowire arrays with massive lattice contraction and wide bandgap. Nat. Commun. 2022, 13, 3467. [Google Scholar]
- Sun, L.; Fan, Y.; Wang, X.; Susantyoko, R.A.; Zhang, Q. Large scale low cost fabrication of diameter controllable silicon nanowire arrays. Nanotechnology 2014, 25, 255302. [Google Scholar] [CrossRef] [PubMed]
- Mohamedyaseen, A.; Kumar, P.S.; Kavitha, K.R.; Vignesh, N.A. Anisotropy enhancing vertically aligned silicon-germanium nanowire. Silicon 2022, 14, 12177–12184. [Google Scholar] [CrossRef]
- Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308. [Google Scholar] [CrossRef]
- Mao, J.; Li, J.; Pei, J.; Liu, Y.; Wang, D.; Li, Y. Structure regulation of noble-metal-based nanomaterials at an atomic level. Nano Today 2019, 26, 164–175. [Google Scholar] [CrossRef]
- Wang, S.; Liu, H.; Han, J. Comprehensive study of Au nano-mesh as a catalyst in the fabrication of silicon nanowires arrays by metal-assisted chemical etching. Coatings 2019, 9, 149. [Google Scholar] [CrossRef][Green Version]
- Saxena, S.K.; Borah, R.; Kumar, V.; Rai, H.M.; Late, R.; Sathe, V.M.; Kumar, A.; Sagdeo, P.R.; Kumar, R. Raman spectroscopy for study of interplay between phonon confinement and Fano effect in silicon nanowires. J. Raman Spectrosc. 2016, 47, 283–288. [Google Scholar] [CrossRef]
- Wang, S.; Huang, S.; Zhao, J. Effect of surface morphology changes on optical properties of silicon nanowire arrays. Sensors 2022, 22, 2454. [Google Scholar] [CrossRef]
- Yevgeniya, L.; Mircea, T.; Sina, R.; Dominic, T.; Jan, K.; Tobias, W.; Uwe, H.; Jan-Dirk, K.; Robby, P. On the recombination behavior of p(+)-type polysilicon on oxide junctions deposited by different methods on textured and planar surfaces. Phys. Status Solidi (A) Appl. Mater. Sci. 2017, 214, 1700058. [Google Scholar]
- Bian, C.; Zhang, B.; Zhang, Z.; Chen, H.; Zhang, D.; Wang, S.; Ye, J.; He, L.; Jie, J.; Zhang, X. Wafer-scale fabrication of silicon nanocones via controlling catalyst evolution in all-wet metal-assisted chemical etching. ACS Omega 2022, 7, 2234–2243. [Google Scholar] [CrossRef]
- Wang, S.; Han, J.; Yin, S. The effect of silver-plating time on silicon nanowires arrays fabricated by wet chemical etching method. Opt. Photonics J. 2019, 9, 1–10. [Google Scholar] [CrossRef][Green Version]
- Wang, S.; Han, J.; Song, D.; Wang, X. Effect of NaOH solution concentration on the quality of controllable silicon nanowires array fabrication. Mater. Res. Express 2019, 6, 1250.e9. [Google Scholar] [CrossRef]
- Carey, J.; Crouch, C.; Shen, M.; Mazur, E. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt. Lett. 2005, 30, 1773–1775. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.P.; Chen, Z.D.; Zhang, C.L. Effect of thermal annealing on sub-band-gap absorptance of microstructured silicon in air. Front. Phys. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Zhao, T.; Peng, Y.; Miao, Q.; Li, B.; Liang, K.; Yang, R.; Han, D. One-dimensional single-photon position-sensitive silicon photomultiplier and its application in Raman spectroscopy. Opt. Express 2017, 25, 22820–22828. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, G.; Liu, Y.; Pan, S.; Zhang, H.; Yu, D.-P.; Zhang, Z. Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects. Phys. Rev. B 2000, 61, 16827. [Google Scholar] [CrossRef][Green Version]
- Yuan, X.; Mayanovic, R.A. An empirical study on raman peak fitting and its application to raman quantitative research. Appl. Spectrosc. Soc. Appl. Spectrosc. 2017, 71, 2325–2338. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X.; Chao, W.Z.; Xu, C.G.; Chun, W.L.; Dong, Y.S. Study of nano-crystalline silicon films. Sci. China Ser. A 1993, 36, 248–256. [Google Scholar]
- Cheng, G. Nano-structural and thin film materials studies by raman and brillouin scattering. J. Light Scatt. 2010, 22, 196–206. [Google Scholar]
- Peng, K.; Gao, S.; Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 2002, 14, 1164–1167. [Google Scholar] [CrossRef]
- Peng, K.Q.; Hu, J.J.; Yan, Y.J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Sichanugrist, P.; Kato, S.; Usami, N. Impact of anodic aluminum oxide fabrication and post-deposition anneal on the effective carrier lifetime of vertical silicon nanowires. Sol. Energy Mater. Sol. Cells 2017, 166, 39–44. [Google Scholar] [CrossRef]
- Dkhil, S.B.; Davenas, J.; Bourguiga, R.; Cornu, D. Effect of thermal treatments on the properties of PVK/silicon nanowires films for hybrid solar cells. Synth. Met. 2011, 161, 1928–1933. [Google Scholar] [CrossRef]
- Cantarero, A. Review on Raman scattering in semiconductor nanowires: I. theory. J. Nanophotonics 2013, 7, 071598. [Google Scholar] [CrossRef][Green Version]
- Priyanka, Y.; Deepika, P.; Suryakant, M.; Shailendram, K.S.; Swarup, R.; Vivek, K.; Pankajm, R.S.; Rajesh, K. Spectral anomaly in raman scattering from p-type silicon nanowires. J. Phys. Chem. C 2017, 121, 5372–5378. [Google Scholar]
- Piscanec, S.; Cantoro, M.; Ferrari, A.C.; Zapien, J.A.; Lifshitz, Y.; Lee, S.T.; Hofmann, S.; Robertson, J. Raman spectroscopy of silicon nanowires. Phys. Rev. B 2003, 68, 241312. [Google Scholar] [CrossRef][Green Version]
- Hochbaum, A.; Chen, R.; Delgado, R.; Liang, W.; Garnett, E.; Najarian, M.; Majumdar, A.; Yang, P. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167. [Google Scholar] [CrossRef]
- Doerk, G.S.; Carraro, C.; Maboudian, R. Temperature dependence of Raman spectra for individual silicon nanowires. Phys. Rev. B 2009, 80, 073306. [Google Scholar] [CrossRef]
- Hasdeo, E.H.; Nugraha, A.R.T.; Dresselhaus, M.S.; Saito, R. Breit-Wigner-Fano line shapes in Raman spectra of graphene. Phys. Rev. B 2014, 90, 245140. [Google Scholar] [CrossRef][Green Version]
- Burke, B.G.; Chan, J.; Williams, K.A.; Wu, Z.; Puretzky, A.A.; Geohegan, D.B. Raman study of Fano interference in p-type doped silicon. J. Raman Spectrosc. 2010, 41, 1469–1474. [Google Scholar] [CrossRef][Green Version]
Peak Intensity /Counts | Full Width at Half Maximum/cm−1 | Peak Area /cm−1 Counts· | |
---|---|---|---|
Disordered SiNWs before annealing | 33,838.4 | 19.91 | 717,321 |
Disordered SiNWs after annealing | 29,273.6 | 8.632 | 268,981 |
Ordered SiNWs before annealing | 70,816.7 | 15.41 | 939,731 |
Ordered SiNWs after annealing | 67,633.2 | 10.91 | 808,686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, Y. Effect of High-Temperature Annealing on Raman Characteristics of Silicon Nanowire Arrays. Coatings 2023, 13, 793. https://doi.org/10.3390/coatings13040793
Wang S, Zhang Y. Effect of High-Temperature Annealing on Raman Characteristics of Silicon Nanowire Arrays. Coatings. 2023; 13(4):793. https://doi.org/10.3390/coatings13040793
Chicago/Turabian StyleWang, Shanshan, and Yan Zhang. 2023. "Effect of High-Temperature Annealing on Raman Characteristics of Silicon Nanowire Arrays" Coatings 13, no. 4: 793. https://doi.org/10.3390/coatings13040793
APA StyleWang, S., & Zhang, Y. (2023). Effect of High-Temperature Annealing on Raman Characteristics of Silicon Nanowire Arrays. Coatings, 13(4), 793. https://doi.org/10.3390/coatings13040793