Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghinejad, M.; Cai, W. All-Optical Control of Light in Micro- and Nanophotonics. ACS Photonics 2019, 6, 1082–1093. [Google Scholar] [CrossRef]
- Kurumida, J.; Yoo, S.J.B. Nonlinear Optical Signal Processing in Optical Packet Switching Systems. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 978–987. [Google Scholar] [CrossRef]
- Dvornikov, A.S.; Walker, E.P.; Rentzepis, P.M. Two-Photon Three-Dimensional Optical Storage Memory. J. Phys. Chem. A 2009, 113, 13633–13644. [Google Scholar] [CrossRef]
- Walter, F.; Li, G.; Meier, C.; Zhang, S.; Zentgraf, T. Ultrathin Nonlinear Metasurface for Optical Image Encoding. Nano Lett. 2017, 17, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Palomba, S.; Novotny, L. Near-Field Imaging with a Localized Nonlinear Light Source. Nano Lett. 2009, 9, 3801–3804. [Google Scholar] [CrossRef] [PubMed]
- Gadhwal, R.; Devi, A. A review on the development of optical limiters from homogeneous to reflective 1-D photonic crystal structures. Opt. Laser Technol. 2021, 141, 107144. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Tan, D.; Xian, Y.; Liu, X.; Qiu, J. Highly Defective Nanocrystals as Ultrafast Optical Switches: Nonequilibrium Synthesis and Efficient Nonlinear Optical Response. Chem. Mater. 2020, 32, 10025–10034. [Google Scholar] [CrossRef]
- Liu, G.; You, S.; Ma, M.; Huang, H.; Ren, N. Removal of Nitrate by Photocatalytic Denitrification Using Nonlinear Optical Material. Environ. Sci. Technol. 2016, 50, 11218–11225. [Google Scholar] [CrossRef]
- Kulyk, B.; Essaidi, Z.; Kapustianyk, V.; Turko, B.; Rudyk, V.; Partyka, M.; Addou, M.; Sahraoui, B. Second and third order nonlinear optical properties of nanostructured ZnO thin films deposited on a-BBO and LiNbO3. Opt. Commun. 2008, 281, 6107–6111. [Google Scholar] [CrossRef]
- Zhang, Y.-x.; Wang, Y.-h. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef]
- You, J.W.; Bongu, S.R.; Bao, Q.; Panoiu, N.C. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophotonics 2019, 8, 63–97. [Google Scholar] [CrossRef]
- Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E.-B.; Tünnermann, A. Enhancing Second Harmonic Generation in Gold Nanoring Resonators Filled with Lithium Niobate. Nano Lett. 2015, 15, 1025–1030. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Mota-Santiago, P.; Tamayo-Rivera, L.; García-Ramírez, E.V.; Crespo-Sosa, A.; Oliver, A.; Reyes-Esqueda, J.-A. Size-and shape-dependent nonlinear optical response of Au nanoparticles embedded in sapphire. Opt. Mater. Express 2014, 4, 92. [Google Scholar] [CrossRef]
- Sato, R.; Ohnuma, M.; Oyoshi, K.; Takeda, Y. Experimental investigation of nonlinear optical properties of Ag nanoparticles: Effects of size quantization. Phys. Rev. B 2014, 90, 125417. [Google Scholar] [CrossRef]
- Che, F.; Grabtchak, S.; Whelan, W.M.; Ponomarenko, S.A.; Cada, M. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide. Results Phys. 2017, 7, 593–595. [Google Scholar] [CrossRef]
- Alam, M.Z.; de Leon, I.; Boyd, R.W. Large Optical Nonlinearity of Indium Tin Oxide in its Epsilon-Near-Zero Region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Wickberg, A.; Kieninger, C.; Sürgers, C.; Schlabach, S.; Mu, X.; Koos, C.; Wegener, M. Second-Harmonic Generation from ZnO/Al2O3 Nanolaminate Optical Metamaterials Grown by Atomic-Layer Deposition. Adv. Opt. Mater. 2016, 4, 1203–1208. [Google Scholar] [CrossRef]
- Alloatti, L.; Kieninger, C.; Froelich, A.; Lauermann, M.; Frenzel, T.; Köhnle, K.; Freude, W.; Leuthold, J.; Wegener, M.; Koos, C. Second-order nonlinear optical metamaterials: ABC-type nanolaminates. Appl. Phys. Lett. 2015, 107, 121903. [Google Scholar] [CrossRef]
- Probst, A.-C.; Stollenwerk, M.; Emmerich, F.; Büttner, A.; Zeising, S.; Stadtmüller, J.; Riethmüller, F.; Stehlíková, V.; Wen, M.; Proserpio, L.; et al. Influence of sputtering pressure on the nanostructure and the X-ray reflectivity of iridium coatings. Surf. Coat. Technol. 2018, 343, 101–107. [Google Scholar] [CrossRef]
- Henriksen, P.L.; Ferreira, D.D.M.; Massahi, S.; Civitani, M.C.; Basso, S.; Vogel, J.; Armendariz, J.R.; Knudsen, E.B.; Irastorza, I.G.; Christensen, F.E. Iridium thin-film coatings for the BabyIAXO hybrid X-ray optic. Appl. Opt. 2021, 60, 6671–6681. [Google Scholar] [CrossRef] [PubMed]
- Arblaster, J.W. Crystallographic Properties of Iridium. Platin. Met. Rev. 2010, 54, 93–102. [Google Scholar] [CrossRef]
- Vila-Comamala, J.; Gorelick, S.; Färm, E.; Kewish, C.M.; Diaz, A.; Barrett, R.; Guzenko, V.A.; Ritala, M.; David, C. Ultra-High Resolution Zone-Doubled Diffractive X-ray Optics for the Multi-keV Regime. Opt. Express 2011, 19, 175–184. [Google Scholar] [CrossRef]
- Weber, T.; Käsebier, T.; Szeghalmi, A.; Knez, M.; Kley, E.-B.; Tünnermann, A. Iridium Wire Grid Polarizer Fabricated using Atomic Layer Deposition. Nanoscale Res. Lett. 2011, 6, 558. [Google Scholar] [CrossRef]
- Hemphill, R.; Hurwitz, M.; Pelizzo, M.G. Osmium Atomic-Oxygen Protection by an Iridium Overcoat for Increased Extreme-Ultraviolet Grating Efficiency. Appl. Opt. 2003, 42, 5149–5157. [Google Scholar] [CrossRef]
- Schmitt, P.; Felde, N.; Döhring, T.; Stollenwerk, M.; Uschmann, I.; Hanemann, K.; Siegler, M.; Klemm, G.; Gratzke, N.; Tünnermann, A.; et al. Optical, Structural, and Functional Properties of Highly Reflective and Stable Iridium Mirror Coatings for Infrared Applications. Opt. Mater. Express 2021, 12, 545–559. [Google Scholar] [CrossRef]
- Colombo, A.; Dragonetti, C.; Guerchais, V.; Hierlinger, C.; Zysman-Colman, E.; Roberto, D. A trip in the nonlinear optical properties of iridium complexes. Coord. Chem. Rev. 2020, 414, 213293. [Google Scholar] [CrossRef]
- Yan, L.; Woollam, J.A. Optical constants and roughness study of dc magnetron sputtered iridium films. J. Appl. Phys. 2002, 92, 4386–4392. [Google Scholar] [CrossRef]
- Kohli, S.; Niles, D.; Rithner, C.D.; Dorhout, P.K. Structural and optical properties of Iridium films annealed in air. Adv. X-ray Anal. 2002, 45, 352–358. [Google Scholar]
- Ghazaryan, L.; Pfeiffer, K.; Schmitt, P.; Beladiya, V.; Kund, S.; Szeghalmi, A. Atomic Layer Deposition. In Digital Encyclopedia of Applied Physics; Wiley-VCH: Weinheim, Germany, 2020; pp. 1–44. ISBN 9783527600434. [Google Scholar]
- Paul, P.; Hafiz, M.G.; Schmitt, P.; Patzig, C.; Otto, F.; Fritz, T.; Tünnermann, A.; Szeghalmi, A. Optical Bandgap Control in Al2O3/TiO2 Heterostructures by Plasma Enhanced Atomic Layer Deposition: Toward Quantizing Structures and Tailored Binary Oxides. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119508. [Google Scholar] [CrossRef] [PubMed]
- Kuppadakkath, A.; Najafidehaghani, E.; Gan, Z.; Tuniz, A.; Ngo, G.Q.; Knopf, H.; Löchner, F.J.F.; Abtahi, F.; Bucher, T.; Shradha, S.; et al. Direct growth of monolayer MoS2 on nanostructured silicon waveguides. Nanophotonics 2022, 11, 4397–4408. [Google Scholar] [CrossRef]
- Schmitt, P.; Beladiya, V.; Felde, N.; Paul, P.; Otto, F.; Fritz, T.; Tünnermann, A.; Szeghalmi, A.V. Influence of Substrate Materials on Nucleation and Properties of Iridium Thin Films Grown by ALD. Coatings 2021, 11, 173. [Google Scholar] [CrossRef]
- Daryakar, N.; David, C. Thin Films of Nonlinear Metallic Amorphous Composites. Nanomaterials 2022, 12, 3359. [Google Scholar] [CrossRef] [PubMed]
- Genevée, P.; Ahiavi, E.; Janunts, N.; Pertsch, T.; Oliva, M.; Kley, E.-B.; Szeghalmi, A. Blistering during the atomic layer deposition of iridium. J. Vac. Sci. Technol. A 2016, 34, 01A113. [Google Scholar] [CrossRef]
- ImageJ. Available online: https://imagej.nih.gov/ij/ (accessed on 10 September 2020).
- Schröder, S.; Herffurth, T.; Blaschke, H.; Duparré, A. Angle-resolved scattering: An effective method for characterizing thin-film coatings. Appl. Opt. 2011, 50, C164–C171. [Google Scholar] [CrossRef]
- Markel, V.A. Introduction to the Maxwell Garnett approximation: Tutorial. JOSA A 2016, 33, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Battie, Y.; Resano-Garcia, A.; Chaoui, N.; Zhang, Y.; En Naciri, A. Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix. J. Chem. Phys. 2014, 140, 44705. [Google Scholar] [CrossRef]
- Sipe, J.E.; Boyd, R.W. Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A 1992, 46, 1614–1629. [Google Scholar] [CrossRef] [PubMed]
- Peiponen, K.-E.; Mäkinen, M.O.A.; Saarinen, J.J.; Asakura, T. Dispersion Theory of Liquids Containing Optically Linear and Nonlinear Maxwell Garnett Nanoparticles. Opt. Rev. 2001, 8, 9–17. [Google Scholar] [CrossRef]
- Saarinen, J.J.; Vartiainen, E.M.; Peiponen, K.-E. On Tailoring of Nonlinear Spectral Properties of Nanocomposites Having Maxwell Garnett or Bruggeman Structure. Opt. Rev. 2003, 10, 111–115. [Google Scholar] [CrossRef]
- Boyd, R.W.; Gehr, R.J.; Fischer, G.L.; Sipe, J.E. Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. A 1996, 5, 505–512. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9780080479750. [Google Scholar]
- Del Coso, R.; Solis, J. Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 2004, 21, 640. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Rodrigo, D.; Yu, R.; Canet-Ferrer, J.; Ghosh, D.S.; Yongsunthon, R.; Baker, D.E.; Rezikyan, A.; García de Abajo, F.J.; Pruneri, V. Tunable Plasmons in Ultrathin Metal Films. Nat. Photon. 2019, 13, 328–333. [Google Scholar] [CrossRef]
- Formica, N.; Ghosh, D.S.; Carrilero, A.; Chen, T.L.; Simpson, R.E.; Pruneri, V. Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer. ACS Appl. Mater. Interfaces 2013, 5, 3048–3053. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, Y.; Chen, R.; Cheng, X.; Xu, Z.; Jiang, T. Z-scan measurement of the nonlinear refractive index of monolayer WS(2). Opt. Express 2015, 23, 15616–15623. [Google Scholar] [CrossRef]
- Milam, D. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica. Appl. Opt. 1998, 37, 546–550. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784–1794. [Google Scholar] [CrossRef]
- Guillet, Y.; Rashidi-Huyeh, M.; Palpant, B. Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles. Phys. Rev. B 2009, 79, 45410. [Google Scholar] [CrossRef]
- Moradi, A. Maxwell-Garnett effective medium theory: Quantum nonlocal effects. Phys. Plasmas 2015, 22, 42105. [Google Scholar] [CrossRef]
- Boyd, R.W.; Shi, Z.; de Leon, I. The third-order nonlinear optical susceptibility of gold. Opt. Commun. 2014, 326, 74–79. [Google Scholar] [CrossRef]
- Castro, H.P.S.; Wender, H.; Alencar, M.A.R.C.; Teixeira, S.R.; Dupont, J.; Hickmann, J.M. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition. J. Appl. Phys. 2013, 114, 183104. [Google Scholar] [CrossRef]
- Hache, F.; Ricard, D.; Flytzanis, C.; Kreibig, U. The optical kerr effect in small metal particles and metal colloids: The case of gold. Appl. Phys. A 1988, 47, 347–357. [Google Scholar] [CrossRef]
- Stepanov, A.L. Nonlinear Optical Properties of Metal Nanoparticles in Silicate Glass. In Glass Nanocomposites: Synthesis, Properties and Applications; Karmakar, B., Rademann, K., Stepanov, A.L., Eds.; William Andrew: Norwich, UK, 2016; pp. 165–179. ISBN 9780323393096. [Google Scholar]
- Shen, H.; Cheng, B.; Lu, G.; Ning, T.; Guan, D.; Zhou, Y.; Chen, Z. Enhancement of optical nonlinearity in periodic gold nanoparticle arrays. Nanotechnology 2006, 17, 4274–4277. [Google Scholar] [CrossRef]
- Bai, S.; Li, Q.; Zhang, H.; Chen, X.; Luo, S.; Gong, H.; Yang, Y.; Zhao, D.; Qiu, M. Large third-order nonlinear refractive index coefficient based on gold nanoparticle aggregate films. Appl. Phys. Lett. 2015, 107, 141111. [Google Scholar] [CrossRef]
- Stenzel, O.; Wilbrandt, S.; Mühlig, C.; Schröder, S. Linear and Nonlinear Absorption of Titanium Dioxide Films Produced by Plasma Ion-Assisted Electron Beam Evaporation: Modeling and Experiments. Coatings 2020, 10, 59. [Google Scholar] [CrossRef]
- Smith, D.D.; Yoon, Y.; Boyd, R.W.; Campbell, J.K.; Baker, L.A.; Crooks, R.M.; George, M. z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 1999, 86, 6200–6205. [Google Scholar] [CrossRef]
- Jia, L.; Cui, D.; Wu, J.; Feng, H.; Yang, Y.; Yang, T.; Qu, Y.; Du, Y.; Hao, W.; Jia, B.; et al. Highly nonlinear BiOBr nanoflakes for hybrid integrated photonics. APL Photonics 2019, 4, 90802. [Google Scholar] [CrossRef]
Sample ID | Number of ALD Cycles | Ir Thickness XRR (nm) | Ir Density XRR (g/cm3) | Ir Surface Roughness (nm) | Optical Losses @ 405 nm (%) | Total Scattering @ 405 nm (ppm) | |
---|---|---|---|---|---|---|---|
XRR | WLI | ||||||
1 | 30 | 1.6 ± 1.0 | 8.5 ± 2.0 | 0.4 ± 0.2 | 0.5 ± 0.1 | 3.1 ± 0.5 | 174 ± 17 |
2 | 45 | 2.0 ± 1.0 | 4.1 ± 2.0 | 0.8 ± 0.2 | - | 2.7 ± 0.5 | 40 ± 4 |
3 | 60 | 3.0 ± 1.0 | 11.8 ± 1.0 | 1.0 ± 0.2 | 0.5 ± 0.1 | 14.5 ± 0.5 | 252 ± 25 |
4 | 75 | 4.0 ± 1.0 | 18.0 ± 1.0 | 1.2 ± 0.2 | - | 24.2 ± 0.5 | - |
5 | 100 | 5.7 ± 1.0 | 20.1 ± 0.5 | 0.9 ± 0.2 | 0.6 ± 0.1 | 37.5 ± 0.5 | 711 ± 71 |
6 | 150 | 8.7 ± 1.0 | 22.5 ± 0.5 | 1.4 ± 0.2 | 0.9 ± 0.1 | 37.8 ± 0.5 | 79 ± 8 |
7 | 200 | 11.7 ± 1.0 | 22.3 ± 0.2 | 1.2 ± 0.2 | 0.9 ± 0.1 | 36 0 ± 0.3 | 236 ± 24 |
8 | 250 | 14.3 ± 1.0 | 22.3 ± 0.2 | 1.1 ± 0.2 | 0.4 ± 0.1 | 34.8 ± 0.3 | 217 ± 22 |
9 | 400 | 24.7 ± 1.0 | 22.4 ± 0.1 | 0.9 ± 0.2 | 0.4 ± 0.1 | 31.5 ± 0.3 | 87 ± 9 |
Number of ALD Cycles | n2 (10−15 m2/W) (exp) | n2 (10−15 m2/W) (sim) | β (10−8 m/W) (exp) | β (10−8 m/W) (sim) | Ir Susceptibility (10−17 m2/V2) (exp) | Ir Susceptibility (10−17 m2/V2) (sim) | ||
---|---|---|---|---|---|---|---|---|
Re(χ(3)) | Im(χ(3)) | Re(χ(3)) | Im(χ(3)) | |||||
30 | 1.77 ± 0.11 | 4.22 | −4.01 ± 0.33 | −7.44 | 3.24 ± 0.21 | −3.17 ± 0.27 | 3.52 | −3.41 |
45 | 1.86 ± 0.10 | 2.15 | −3.35 ± 0.27 | −3.52 | 2.44 ± 0.14 | −2.08± 0.17 | 2.66 | −2.24 |
60 | 1.69 ± 0.13 | 2.95 | −2.88 ± 0.12 | −3.54 | 6.53 ± 0.35 | −3.53± 0.32 | 7.28 | −3.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitt, P.; Paul, P.; Li, W.; Wang, Z.; David, C.; Daryakar, N.; Hanemann, K.; Felde, N.; Munser, A.-S.; Kling, M.F.; et al. Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings 2023, 13, 787. https://doi.org/10.3390/coatings13040787
Schmitt P, Paul P, Li W, Wang Z, David C, Daryakar N, Hanemann K, Felde N, Munser A-S, Kling MF, et al. Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings. 2023; 13(4):787. https://doi.org/10.3390/coatings13040787
Chicago/Turabian StyleSchmitt, Paul, Pallabi Paul, Weiwei Li, Zilong Wang, Christin David, Navid Daryakar, Kevin Hanemann, Nadja Felde, Anne-Sophie Munser, Matthias F. Kling, and et al. 2023. "Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition" Coatings 13, no. 4: 787. https://doi.org/10.3390/coatings13040787
APA StyleSchmitt, P., Paul, P., Li, W., Wang, Z., David, C., Daryakar, N., Hanemann, K., Felde, N., Munser, A.-S., Kling, M. F., Schröder, S., Tünnermann, A., & Szeghalmi, A. (2023). Linear and Nonlinear Optical Properties of Iridium Nanoparticles Grown via Atomic Layer Deposition. Coatings, 13(4), 787. https://doi.org/10.3390/coatings13040787