Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Discrete Effects of Surface Structure and Surface Chemistry on Wettability
3.2. Synergistic Effect of Surface Structure and Surface Chemistry on Wettability
3.3. Dynamic Behaviour of Water Drops
3.4. Durability Tests
3.5. Various Substrates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wheeler, G. Alkoxysilanes and the Consolidation of Stone; The Getty Conservation Institute: Los Angeles, CA, USA, 2005. [Google Scholar]
- Hosseini, M.; Karapanagiotis, I. (Eds.) Advanced Materials for the Conservation of Stone; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Lampakis, D.; Manoudis, P.N.; Karapanagiotis, I. Monitoring the polymerization process of Si-based superhydrophobic coatings using Raman spectroscopy. Prog. Org. Coat. 2013, 76, 488–494. [Google Scholar] [CrossRef]
- Fantazzini, P.; Piacenti, F. Hydrophobic treatments for stone conservation - Influence of the application method on penetration, distribution and efficiency. Stud. Conserv. 2003, 48, 217–226. [Google Scholar]
- Crupi, V.; Fazio, B.; Gessini, A.; Kis, Z.; La Russa, M.F.; Majolino, D.; Masciovecchio, C.; Ricca, M.; Rossi, B.; Ruffolo, S.A.; et al. TiO2–SiO2–PDMS nanocomposite coating with self-cleaning effect for stone material: Finding the optimal amount of TiO2. Constr. Build. Mater. 2018, 166, 464–471. [Google Scholar]
- Facio, D.S.; Ordonez, J.A.; Gil, M.A.A.; Carrascosa, L.A.M.; Mosquera, M.J. New consolidant-hydrophobic treatment by combining SiO2 composite and fluorinated alkoxysilane: Application on decayed biocalcareous stone from an 18th century Cathedral. Coatings 2018, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Renda, V.; De Buergo, M.A.; Saladino, M.L.; Caponetti, E. Assessment of protection treatments for carbonatic stone using nanocomposite coatings. Prog. Org. Coat. 2020, 141, 105515. [Google Scholar]
- Yilgör, E.; Yilgör, I. Silicone containing copolymers: Synthesis, properties and applications. Prog. Polym. Sci. 2014, 39, 1165–1195. [Google Scholar]
- Wu, K.H.; Chao, C.M.; Yeh, T.F.; Chang, T.C. Thermal stability and corrosion resistance of polysiloxane coatings on 2024-T3 and 6061-T6 aluminum alloy. Surf. Coat. Technol. 2007, 201, 5782–5788. [Google Scholar]
- Zhang, C.; Qu, L.; Wang, Y.; Xu, T.; Zhang, C. Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes. RSC Adv. 2018, 8, 9901. [Google Scholar]
- Allesandrini, G.; Aglietto, M.; Castelvetro, V.; Ciardelli, F.; Peruzzi, R.; Toniolo, L. Comparative evaluation of fluorinated and unfluorinated acrylic copolymers as water-repellent coating materials for stone. J. Appl. Polym. Sci. 2000, 76, 962–977. [Google Scholar]
- Rizzarelli, P.; La Rosa, C.; Torrisi, A. Testing a fluorinated compound as a protective material for calcarenite. J. Cult. Herit. 2001, 2, 55–62. [Google Scholar] [CrossRef]
- Toniolo, L.; Poli, T.; Castelvetro, V.; Manariti, A.; Chiantore, O.; Lazzari, M. Tailoring new fluorinated acrylic copolymers as protective coatings for marble. J. Cult. Herit. 2002, 3, 309–316. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeova, B.; Panayiotou, C. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A Mater. 2009, 97, 351–360. [Google Scholar]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Eng. Chem. 1936, 28, 988–994. [Google Scholar]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–951. [Google Scholar]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Panayiotou, C. Superhydrophobic composite films produced on various substrates. Langmuir 2008, 24, 11225–11232. [Google Scholar]
- Karapanagiotis, I.; Pavlou, A.; Manoudis, P.N.; Aifantis, K.E. Water repellent ORMOSIL films for the protection of stone and other materials. Mater. Lett. 2014, 131, 276–279. [Google Scholar]
- Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8. [Google Scholar]
- Aslanidou, D.; Karapanagiotis, I.; Panayiotou, C. Tuning the wetting properties of siloxane-nanoparticle coatings to induce superhydrophobicity and superoleophobicity for stone protection. Mater. Des. 2018, 2016, 736–744. [Google Scholar]
- Adamopoulos, F.G.; Vouvoudi, E.C.; Pavlidou, E.; Achilias, D.S.; Karapanagiotis, I. TEOS-based superhydrophobic coating for the protection of stone-built cultural heritage. Coatings 2021, 11, 135. [Google Scholar] [CrossRef]
- Karapanagiotis, I.; Manoudis, P.N. Superhydrophobic and superamphiphobic materials for the conservation of natural stone: An overview. Constr. Build. Mater. 2022, 320, 126175. [Google Scholar]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeová, B.; Panayiotou, C. Surface properties of superhydrophobic coatings for stone protection. J. Nano Res. 2009, 8, 23–33. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Tsakalof, A.; Karapanagiotis, I.; Zuburtikudis, I.; Panayiotou, C. Fabrication of super-hydrophobic surfaces for enhanced stone protection. Surf. Coat. Technol. 2009, 203, 1322–1328. [Google Scholar] [CrossRef]
- Chatzigrigoriou, A.; Manoudis, P.N.; Karapanagiotis, I. Fabrication of water repellent coatings using waterborne resins for the protection of the cultural heritage. Macromol. Symp. 2013, 331–332, 158–165. [Google Scholar] [CrossRef]
- Facio, D.S.; Mosquera, M.J. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. ACS Appl. Mater. Interfaces 2013, 5, 7517–7526. [Google Scholar] [CrossRef]
- Facio, D.S.; Carrascosa, L.A.M.; Mosquera, M.J. Producing lasting amphiphobic building surfaces with self-cleaning properties. Nanotechnology 2017, 28, 265601. [Google Scholar] [CrossRef]
- Aslanidou, D.; Karapanagiotis, I.; Lampakis, D. Waterborne superhydrophobic and superoleophobic coatings for the protection of marble and sandstone. Materials 2018, 11, 585. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, M.J.; Carrascosa, L.A.M.; Badreldin, N. Producing superhydrophobic/oleophobic coatings on cultural heritage building materials. Pure Appl. Chem. 2018, 90, 551–561. [Google Scholar] [CrossRef]
- Zarzuela, R.; Carbú, M.; Gil, M.L.A.; Cantoral, J.M.; Mosquera, M.J. Ormosils loaded with SiO2 nanoparticles functionalized with Ag as multifunctional superhydrophobic/biocidal/consolidant treatments for buildings conservation. Nanotechnology 2019, 30, 345701. [Google Scholar] [CrossRef]
- Cappelletti, G.; Fermo, P.; Camiloni, M. Smart hybrid coatings for natural stones conservation. Prog. Org. Coat. 2015, 78, 511–516. [Google Scholar] [CrossRef]
- De Ferri, L.; Lottici, P.P.; Lorenzi, A.; Montenero, A.; Salvioli-Mariani, E. Study of silica nanoparticles–polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 2011, 12, 356–363. [Google Scholar] [CrossRef]
- Stefanidou, M.; Matziaris, K.; Karagiannis, G. Hydrophobization by means of nanotechnology on Greek sandstones used as building facades. Geosciences 2013, 3, 30–45. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Salvini, A.; Camaiti, M. One-step fabrication of robust and durable superamphiphobic, self-cleaning surface for outdoor and in situ application on building substrates. J. Colloid Interface Sci. 2021, 591, 239–252. [Google Scholar] [CrossRef]
- Evgenidis, S.P.; Kalic, K.; Kostoglou, M.; Karapantsios, T.D. Kerberos: A three camera headed centrifugal/tilting device for studying wetting/dewetting under the influence of controlled body forces. Colloids Surf. A Physicochem. Eng. Asp. 2017, 521, 38–48. [Google Scholar] [CrossRef]
- Rios-Lopez, I.; Evgenidis, S.; Kostoglou, M.; Zabulis, X.; Karapantsios, T.D. Effect of initial droplet shape on the tangential force required for spreading and sliding along a solid surface. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 164–173. [Google Scholar] [CrossRef]
- Ríos-López, I.; Petala, M.; Kostoglou, M.; Karapantsios, T. Sessile droplets shape response to complex body forces. Colloids Surf. A Physicochem. Eng. Asp. 2019, 572, 97–106. [Google Scholar] [CrossRef]
- Ting, Y.; Yiping, Z.; Zheng, P.; Wang, L.; Yan, Z.; Ge, D.; Yang, L. Ultra-durable superhydrophobic surfaces from 3D self-similar network via co-spraying of polymer microspheres and nanoparticles. Chem. Eng. J. 2021, 410, 128314. [Google Scholar]
- Jarad, N.A.; Imran, H.; Imani, S.M.; Didar, T.F.; Soleymani, L. Fabrication of superamphiphobic surfaces via spray coating; a review. Adv. Mater. Technol. 2022, 7, 2101702. [Google Scholar] [CrossRef]
- Striani, R.; Esposito Corcione, C.; Dell’Anna Muia, G.; Frigione, M. Durability of a sunlight-curable organic–inorganic hybrid protective coating for porous stones in natural and artificial weathering conditions. Prog. Org. Coat. 2016, 101, 1–14. [Google Scholar] [CrossRef]
- Ciardelli, F.; Aglietto, M.; Castelvetro, V.; Chiantore, O.; Toniolo, L. Fluorinated polymeric materials for the protection of monumental buildings. Macromol. Symp. 2000, 152, 211–222. [Google Scholar] [CrossRef]
Abbreviation | Sols & Concentrations |
---|---|
6P | 6% w/w Protectosil |
6P/1F | 6% w/w Protectosil & 1% w/w Fluoropolymer |
6P/6F | 6% w/w Protectosil & 6% w/w Fluoropolymer |
1P/6F | 1% w/w Protectosil & 6% w/w Fluoropolymer |
Substrate | Water Drop | Oil Drop | ||
---|---|---|---|---|
WCA (°) | Hysteresis (°) | OCA (°) | Hysteresis (°) | |
Marble | 158.0 ± 2.5 * | 5.7 ± 0.5 | 152.2 ± 0.7 * | 15.8 ± 1.7 |
Sandstone | 159.6 ± 3.1 | 3.1 ± 0.6 | 145.6 ± 6.7 | 8.9 ± 2.1 |
Granite | 163.2 ± 0.5 | 2.5 ± 0.6 | 158.0 ± 2.3 | 5.6 ± 1.0 |
Steel | 158.1 ± 2.7 | 3.1 ± 1.1 | 157.6 ± 6.0 | 4.6 ± 2.0 |
Copper | 164.0 ± 3.4 | 2.6 ± 0.7 | 147.0 ± 1.8 | 14.5 ± 2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoudis, P.N.; Chughtai, Z.; Tsiridis, V.; Evgenidis, S.P.; Spathis, P.K.; Karapantsios, T.D.; Karapanagiotis, I. Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection. Coatings 2023, 13, 700. https://doi.org/10.3390/coatings13040700
Manoudis PN, Chughtai Z, Tsiridis V, Evgenidis SP, Spathis PK, Karapantsios TD, Karapanagiotis I. Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection. Coatings. 2023; 13(4):700. https://doi.org/10.3390/coatings13040700
Chicago/Turabian StyleManoudis, Panagiotis N., Zebunnisa Chughtai, Vasilios Tsiridis, Sotiris P. Evgenidis, Panagiotis K. Spathis, Thodoris D. Karapantsios, and Ioannis Karapanagiotis. 2023. "Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection" Coatings 13, no. 4: 700. https://doi.org/10.3390/coatings13040700
APA StyleManoudis, P. N., Chughtai, Z., Tsiridis, V., Evgenidis, S. P., Spathis, P. K., Karapantsios, T. D., & Karapanagiotis, I. (2023). Tuning the Wettability of a Commercial Silane Product to Induce Superamphiphobicity for Stone Protection. Coatings, 13(4), 700. https://doi.org/10.3390/coatings13040700