Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy
Abstract
1. Introduction
2. Experimental
2.1. Materials and Pretreatment
2.2. Processing Route
2.3. Characterizations and Examinations
3. Results and Discussion
3.1. Phase Composition of LDH/MAO Film
3.2. Surface Morphologies of the As-Prepared Samples
3.3. Surface Wettability
3.4. Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Predoi, D.; Ciobanu, S.C.; Iconaru, S.L.; Predoi, M.V. Influence of the Biological Medium on the Properties of Magnesium Doped Hydroxyapatite Composite Coatings. Coatings 2023, 13, 409. [Google Scholar] [CrossRef]
- Xin, T.Z.; Zhao, Y.H.; Mahjoub, R.; Jiang, J.X.; Yadav, A.; Nomoto, K.; Niu, R.M. Ultrahigh Specific Strength in a Magnesium Alloy Strengthened by Spinodal Decomposition. Sci. Adv. 2021, 23, 1–9. [Google Scholar] [CrossRef]
- Emelyanenko, K.A.; Chulkova, E.V.; Semiletov, A.M.; Domantovsky, A.G.; Palacheva, V.V.; Emelyanenko, A.M.; Boinovich, L.B. The Potential of the Superhydrophobic State to Protect Magnesium Alloy against Corrosion. Coatings 2022, 12, 74. [Google Scholar] [CrossRef]
- Cao, F.Y.; Shi, Z.M.; Song, G.L.; Liu, M.; Dargusch, M.S.; Atrensa, A. Stress Corrosion Cracking of Several Solution Heat-Treated Mg–X Alloys. Corros. Sci. 2015, 96, 121–132. [Google Scholar] [CrossRef]
- Wang, X.J.; Xu, D.K.; Wu, R.Z.; Chen, X.B.; Peng, Q.M.; Jin, L. What Is Going on in Magnesium Alloys. J. Mater. Sci. Technol. 2018, 34, 245–247. [Google Scholar] [CrossRef]
- Vladimirov, B.V.; Krit, B.L.; Lyudin, V.B.; Morozova, N.V.; Rossiiskaya, A.D.; Suminov, I.V.; Epel’feld, A.V. Microarc Oxidation of Magnesium Alloys: A Review. Surf. Eng. Appl. Electrochem. 2014, 50, 195–232. [Google Scholar] [CrossRef]
- Askarnia, R.; Fardi, S.R.; Sobhani, M.; Staji, H.; Aghamohammadi, H. Effect of Graphene Oxide on Properties of AZ91 Magnesium Alloys Coating Developed by Micro-Arc Oxidation Process. J. Alloys Compd. 2022, 892, 162106. [Google Scholar] [CrossRef]
- Chen, X.B.; Yang, H.Y.; Abbott, T.B.; Easton, M.A.; Birbilis, N. Corrosion Protection of Magnesium and Its Alloys by Metal Phosphate Conversion Coatings. Surf. Eng. 2014, 30, 871–879. [Google Scholar] [CrossRef]
- Dong, Q.S.; Ba, Z.X.; Jia, Y.Q.; Chen, Y.J.; Lv, X.Y.; Zhang, X.B.; Wang, Z.Z. Effect of Solution Concentration on Sealing Treatment of Mg-Al Hydrotalcite Film on AZ91D Mg Alloy. J. Magnes. Alloys 2017, 5, 320–325. [Google Scholar] [CrossRef]
- Gu, C.D.; Yan, W.; Zhang, J.L.; Tu, J.P. Corrosion Resistance of AZ31B Magnesium Alloy with a Conversion Coating Produced from a Choline Chloride-Urea Based Deep Eutectic Solvent. Corros. Sci. 2016, 106, 108–116. [Google Scholar] [CrossRef]
- Cui, L.Y.; Liu, H.P.; Zhang, W.L.; Han, Z.Z.; Deng, M.X.; Zeng, R.C. Corrosion Resistance of a Superhydrophobic Micro-Arc Oxidation Coating on Mg-4Li-1Ca Alloy. J. Mater. Sci. Technol. 2017, 33, 1263–1271. [Google Scholar] [CrossRef]
- Zhang, W.X.; Jiang, Z.H.; Li, G.Y.; Jiang, Q.; Lian, J.S. Electroless Ni–Sn–P Coating on AZ91D Magnesium Alloy and Its Corrosion Resistance. Surf. Coat. Technol. 2008, 202, 2570–2576. [Google Scholar] [CrossRef]
- Bakkar, A.; Neubert, V. Electrodeposition onto Magnesium in Air and Water Stable Ionic Liquids: From Corrosion to Successful Plating. Electrochem. Commun. 2008, 9, 2428–2435. [Google Scholar] [CrossRef]
- Istrate, B.; Mareci, D.; Munteanu, C.; Stanciu, S.; Luca, D.; Crimu, C.I.; Kamel, E. In vitro electrochemical properties of biodegradable ZrO2-CaO coated MgCa alloy using atmospheric plasma spraying. J. Optoelectron. Adv. Mater. 2015, 17, 1186–1192. [Google Scholar]
- Song, G.L.; Unocic, K.A.; Meyer, H., III; Cakmak, E.; Brady, M.P.; Gannon, P.E.; Himmer, P.; Andrews, Q. The Corrosion and Passivity of Sputtered Mg-Ti Alloys. Corros. Sci. 2016, 104, 36–46. [Google Scholar] [CrossRef]
- Simchen, F.; Sieber, M.; Kopp, A.; Lampke, T. Introduction to Plasma Electrolytic Oxidation—An Overview of the Process and Applications. Coatings 2020, 10, 628. [Google Scholar] [CrossRef]
- Song, X.H.; Lu, J.H.; Yin, X.J.; Jiang, J.P.; Wang, J. The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy. J. Magnes. Alloys 2012, 1, 318–322. [Google Scholar] [CrossRef]
- Zheng, Z.R.; Zhao, M.C.; Tan, L.L.; Zhao, Y.C.; Xie, B.; Yin, D.F.; Yang, K.; Atrens, A. Corrosion Behavior of a Self-Sealing Coating Containing CeO2 Particles on Pure Mg Produced by Micro-Arc Oxidation. Surf. Coat. Technol. 2020, 386, 125456. [Google Scholar] [CrossRef]
- Atapour, M.; Blawert, C.; Zheludkevich, M.L. The Wear Characteristics of CeO2 Containing Nanocomposite Coating Made by Aluminate-Based PEO on AM 50 Magnesium Alloy. Surf. Coat. Technol. 2019, 357, 626–637. [Google Scholar] [CrossRef]
- Razzaq, A.; Ali, S.; Asif, M.; In, S. Layered Double Hydroxide (LDH) Based Photocatalysts: An Outstanding Strategy for Efficient Photocatalytic CO2 Conversion. Catalysts 2020, 10, 1185. [Google Scholar] [CrossRef]
- Boumeriame, H.; Da Silva, E.S.; Cherevan, A.S.; Chafik, T.; Faria, J.L.; Eder, D. Layered Double Hydroxide (LDH)-Based Materials: A Mini-Review on Strategies to Improve the Performance for Photocatalytic Water Splitting. J. Energy Chem. 2022, 64, 406–431. [Google Scholar] [CrossRef]
- Ishizaki, T.; Chiba, S.; Watanabe, K.; Hikaru, S. Corrosion Resistance of Mg-Al Layered Double Hydroxide Container-Containing Magnesium Hydroxide Films Formed Directly on Magnesium Alloy by Chemical-Free Steam Coating. J. Mater. Chem. A 2013, 1, 8968–8977. [Google Scholar] [CrossRef]
- Ishizaki, T.; Kamiyama, N.; Watanabe, K.; Serizawa, A. Corrosion Resistance of Mg(OH)2/Mg-Al Layered Double Hydroxide Composite Film Formed Directly on Combustion-Resistant Magnesium Alloy AMCa602 by Steam Coating. Corros. Sci. 2015, 92, 76–84. [Google Scholar] [CrossRef]
- Kamiyama, N.; Panomsuwan, G.; Yamamoto, E.; Sudare, T.; Saito, N.; Ishizaki, T. Effect of Treatment Time in the Mg(OH)2/Mg-Al LDH Composite Film Formed on Mg Alloy AZ31 by Steam Coating on the Corrosion Resistance. Surf. Coat. Technol. 2015, 286, 172–177. [Google Scholar] [CrossRef]
- Dou, B.J.; Wang, Y.Q.; Zhang, T.; Liu, B.; Shao, Y.W.; Meng, G.Z.; Wang, F.H. Growth Behaviors of Layered Double Hydroxide on Microarc Oxidation Film and Anti-Corrosion Performances of the Composite Film. J. Electrochem. Soc. 2016, 163, C917. [Google Scholar] [CrossRef]
- Kuznetsov, B.; Serdechnova, M.; Tedim, J.; Starykevich, M.; Kallip, S.; Oliveira, M.P.; Hack, T.; Nixon, S.; Ferreira, M.G.S.; Zheludkevich, M.L. Sealing of Tartaric Sulfuric (TSA) Anodized AA2024 with Nanostructured LDH Layers. RSC Adv. 2016, 6, 13942–13952. [Google Scholar] [CrossRef]
- Yeganeh, M.; Mohammadi, N. Superhydrophobic Surface of Mg Alloys: A Review. J. Magnes. Alloys 2018, 6, 59–70. [Google Scholar] [CrossRef]
- Zhou, M.; Pang, X.; Wei, L.; Gao, K. Insitu Grown Superhydrophobic Zn-Al Layered Double Hydroxides Films on Magnesium Alloy to Improve Corrosion Properties. Appl. Surf. Sci. 2015, 337, 172–177. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, J.M.; Bai, L.J.; Zhang, G.J. Effects of Al3+ concentration in hydrothermal solution on the microstructural and corrosion resistance properties of fabricated MgO ceramic layer on AZ31 magnesium alloy. Mater. Corros. 2020, 72, 620–632. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhang, J.M.; Bai, L.J.; Zhang, G.J. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro Arc Oxidization Ceramic Layer on AZ31 Mg-alloy. Chin. J. Mater. Res. 2020, 34, 183–190. [Google Scholar]
- Wang, Z.W.; Wu, T.Z. Modeling pressure stability and contact angle hysteresis of superlyophobic surfaces based on local contact line. J. Phys. Chem. C 2015, 119, 12916–12922. [Google Scholar] [CrossRef]
- Wu, L.; Wu, J.H.; Zhang, Z.Y.; Zhang, C.; Zhang, Y.X. Corrosion resistance of fatty acid and fluoroalkylsilane-modified hydrophobic Mg-A1 LDH films on anodized magnesium alloy. Appl. Surf. Sci. 2019, 487, 569–580. [Google Scholar] [CrossRef]
- Duan, H.P.; Yan, C.W.; Wang, F.H. Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D. Electrochim. Acta 2007, 52, 3785–3793. [Google Scholar] [CrossRef]
- Ma, R.Z.; Jiang, M.H.; Xu, Z. Introduction to Functional Materials Science; Metallurgical Industry Press: Beijing, China, 2006. [Google Scholar]
- Yao, Z.P.; Xia, Q.X.; Chang, L.M.; Li, C.N.; Jiang, Z.H. Structure and Properties of Compound Coatings on Mg Alloys by Micro-Arc Oxidation/Hydrothermal Treatment. J. Alloys Compd. 2015, 633, 435–442. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Yin, X.M.; Wang, H.Y.; Han, Z.W.; Ren, L.Q. Corrosion Inhibition of Hydrophobic Coatings Fabricated by Micro-Arc Oxidation on an Extruded Mg-5Sn-1Zn Alloy Substrate. J. Alloys Compd. 2018, 731, 731–738. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, A.T.; Wu, L.; Zhang, Z.Y.; Liao, H.X.; Long, Y.; Li, L.J.; Atrens, A.; Pan, F.S. In-Situ Grown Super-or Hydrophobic Mg-Al Layered Double Hydroxides Films on the Anodized Magnesium Alloy to Improve Corrosion Properties. Surf. Coat. Technol. 2019, 366, 238–247. [Google Scholar] [CrossRef]
Samples | Ecorr/V | Icorr/A·cm−2 | Rp/Ω·cm2 | Pi/mm·y−1 |
---|---|---|---|---|
AZ31 | −1.5794 | 2.78 × 10−4 | 93.91 | 6.35 |
MAO coating | −1.4049 | 4.02 × 10−6 | 6479.9 | 0.09 |
LDH/MAO | −1.1595 | 5.70 × 10−8 | 4.5764 × 105 | 1.30 × 10−3 |
OTES-LDH/MAO | −0.7042 | 4.12 × 10−10 | 6.3296 × 107 | 9.41 × 10−6 |
Sample | Bare AZ31 | MAO | LDH/MAO | OTES-LDH/MAO |
---|---|---|---|---|
Rs/Ω·cm2 | 21.89 | 23.85 | 31.72 | 36.76 |
CPELDH/Ω−1·cm−2·s−n | —— | —— | 2.875 × 10−10 | 1.767 × 10−10 |
nLDH | —— | —— | 0.9286 | 0.9517 |
RLDH/Ω·cm2 | —— | —— | 9.088 × 105 | 2.803 × 106 |
CPEMAO/Ω−1·cm−2·s−n | —— | 1.052 × 10−6 | 2.468 × 10−9 | 1.019 × 10−8 |
nMAO | —— | 0.6743 | 1 | 0.5264 |
RMAO/Ω·cm2 | —— | 1.614 × 104 | 7.996 × 105 | 2.495 × 107 |
CPEdl/Ω−1·cm−2·s−n | 8.069 × 10−6 | 4.866 × 10−5 | 1.02 × 10−7 | 4.553 × 10−8 |
ndl | 0.9793 | 1 | 0.6257 | 0.9015 |
Rct/Ω·cm2 | 68 | 1.57 × 104 | 4.611 × 106 | 4.493 × 107 |
RL/Ω·cm2 | 208.8 | —— | —— | —— |
L/H·cm−2 | 91.07 | —— | —— | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Liu, J.; Liu, G.; Xie, Y.; Duan, Z. Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy. Coatings 2023, 13, 643. https://doi.org/10.3390/coatings13030643
Liu D, Liu J, Liu G, Xie Y, Duan Z. Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy. Coatings. 2023; 13(3):643. https://doi.org/10.3390/coatings13030643
Chicago/Turabian StyleLiu, Dongjie, Jing Liu, Guangyu Liu, Yuntao Xie, and Zongfan Duan. 2023. "Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy" Coatings 13, no. 3: 643. https://doi.org/10.3390/coatings13030643
APA StyleLiu, D., Liu, J., Liu, G., Xie, Y., & Duan, Z. (2023). Study on Corrosion Resistance of LDH/Micro-Arc Oxidation Composite Superhydrophobic Coatings on AZ31 Magnesium Alloy. Coatings, 13(3), 643. https://doi.org/10.3390/coatings13030643