Transparent Films Thickness Mapping Highlighting the Viscosity Effect of Elastic Layers Made by Sol–Gel Process with an In-House Ellipsometer
Abstract
:1. Introduction
- a swift mechanical response which allows the defect to be significantly reduced thanks to the elastic properties of the layer, then a long-term chemical response corresponding to the reformation of chemical bonds that sealed the scratch;
- a mechanical response that takes into account the viscoelastic properties of the layer.
2. Materials and Methods
2.1. Phase Variation in Transmission According to the Thickness Homogeneity
2.2. Principle of Method of Characterization
2.3. Experimental Setup
- the rear face reflection;
- detector noises;
- temporal fluctuations of the light source.
2.4. Ormosil Preparation by Sol–Gel
2.5. Sample to Highlight the Sol–Gel Layer Viscosity
3. Results
3.1. Development of Our Ellipsometer
3.2. Determination of Kλ
3.3. Thin Film Thickness Determination
3.4. Example of a Heterogeneity Thickness of PDMS-Based Ormosil Layer Compared to Silica Substrate
3.5. Viscoelasticity Effect Highlighted by Our Ellipsometer
3.6. Confirmation of the Layer Evolution with Our Woollam Ellipsometer
4. Discussion
4.1. Development of Our Ellipsometer
4.2. Determination of Kλ
4.3. Thin Film Thickness Determination
4.4. Example of A Heterogeneity Thickness of PDMS-Based Ormosil Layer Compared to Silica Substrate
4.5. Viscoelasticity Effect Highlighted by Our Ellipsometer
4.6. Confirmation of the Layer Evolution with Our Woollam Ellipsometer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- André, M. The French Laser Megajoule project (LMJ). Fusion Eng. Des. 1999, 44, 43–49. [Google Scholar] [CrossRef]
- Miquel, J.L.; Lion, C.; Vivini, P. The Laser Mega-Joule: LMJ & Petal status and Program Overview. J. Phys. Conf. Ser. 2016, 688, 012067. [Google Scholar]
- Avice, J.; Brotons, G.; Ruello, P.; Vaudel, G.; Guediche, G.; Piombini, H. Vapor Phase Ammonia Curing to Improve the Mechanical Properties of Antireflection Optical Coatings Designed for Power Laser Optics. Gels 2023, 9, 140. [Google Scholar] [CrossRef]
- Feit, M.D.; Rubenchik, A.M.; Faux, D.F.; Riddle, R.A.; Shapiro, A.B.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R. Modeling of Laser Damage Initiated by Surface Contamination. In Proceedings of the SPIE 2966 of Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 7–9 October 1996. [Google Scholar]
- Shen, X.; Feng, G.Y.; Jing, S.; Han, J.H.; Li, Y.G.; Liu, K. Damage characteristics of laser plasma shock wave on rear surface of fused silica glass. Chin. Phys. B 2019, 28, 085202. [Google Scholar] [CrossRef]
- Demos, S.G.; Negres, R.N.; Raman, R.N.; Rubenchik, A.M.; Feit, M.D. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica. Laser Photonics Rev. 2013, 7, 444–452. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, X.; Huang, J.; Zheng, Z.; Wang, F.; Jiang, X.; Wu, W.; Zheng, W. The damage mechanism off used silica surface induced by 355 nm nanosecond laser. Optik 2011, 122, 1663–1665. [Google Scholar] [CrossRef]
- Wong, J.; Ferriera, J.L.; Lindsey, E.F.; Haupt, D.L.; Hutcheon, I.D.; Kinney, J.H. Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses. J. Non-Cryst. Solids 2006, 352, 255–272. [Google Scholar] [CrossRef]
- Kubota, A.; Caturla, M.J.; Stolken, J.; Feit, M. Densification of fused silica due to shock waves and its implications for 351 nm laser induced damage. Opt. Express 2001, 8, 611–616. [Google Scholar] [CrossRef]
- Su, R.; Xiang, M.; Chen, J.; Jiang, S.; Wei, H. Molecular dynamics simulation of shock induced ejection on fused silica surface. J. Appl. Phys. 2014, 115, 193508. [Google Scholar] [CrossRef]
- Cuq-Lelandais, J.P.; Boustie, M.; Berthe, L.; De Rességuier, T.; Combis, P.; Colombier, J.P.; Nivard, M.; Claverie, A. Spallation generated by femtosecond laser driven shocks in thin metallic targets. J. Phys. D Appl. Phys. 2009, 42, 065402. [Google Scholar] [CrossRef]
- Rayate, A.V.; Patil, S.J.; Pawar, S.S.; Mundhe, N.P.; Jadhav, S.M. Vibration Reduction and Surface Finish Improvement in Boring Operation on Lathe by Viscoelastic Material Damper. IRJET 2017, 4, 2009–2012. [Google Scholar]
- Lee, J.; Jing, B.J.; Porath, L.E.; Sottos, N.R.; Evans, C.M. Shock Wave Energy Dissipation in Catalyst-Free Poly(dimethylsiloxane) Vitrimers. Macromolecules 2020, 53, 4741–4747. [Google Scholar] [CrossRef]
- Kazemi-Kamyab, V.; Subramaniam, K.; Andreopoulos, Y. Stress transmission in porous materials impacted by shock waves. J. Appl. Phys. 2011, 109, 013523. [Google Scholar] [CrossRef]
- Compoint, F. Développement de Revêtements Optiques Hybrides Organiques-Inorganiques pour Limiter l’Endommagement Laser. Ph.D. Thesis, Université François Rabelais de Tours, Tours, France, November 2015. [Google Scholar]
- Wolf, M.P.; Salieb-Beugelaar, G.B.; Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97–134. [Google Scholar] [CrossRef]
- Kopetz, S.; Cai, D.; Rabe, E.; Neyer, A. PDMS-based optical waveguide layer for integration in electrical–optical circuit boards. Int. J. Electron. Commun. 2007, 61, 163–167. [Google Scholar] [CrossRef]
- Wu, M.H.; Paul, K.E.; Whitesides, G.M. Patterning flood illumination with microlens arrays. Appl. Opt. 2002, 41, 2575–2585. [Google Scholar] [CrossRef]
- Dvornic, P.R.; Lenz, R.W. High Temperature Siloxane Elastomers, 1st ed.; Hüthig & Wepf: Basel, Switzerland, 1990. [Google Scholar]
- Kricheldorf, H.R.; Burger, C.; Hertler, W.R.; Kochs, P.; Kreuzer, F.H.; Mülhaupt, R. Silicon in Polymer Synthesis, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Zhang, X.X.; Ye, H.; Xiao, B.; Yan, L.; Lv, H.; Jiang, B. Sol-gel preparation of PDMS/Silica hybrid antireflective coatings with controlled thickness and durable antireflective performance. J. Phys. Chem. C 2010, 114, 19979–19983. [Google Scholar] [CrossRef]
- Zhang, X.X.; Xia, B.B.; Ye, H.P.; Zhang, Y.L.; Xiao, B.; Yan, L.H.; Lv, H.B.; Jiang, B. One-step sol-gel preparation of PDMS–silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings. J. Mater. Chem. 2012, 22, 13132–13140. [Google Scholar] [CrossRef]
- Mark, J.E.; Allcock, H.R.; West, R. Inorganic Polymers, 2nd ed.; Oxford University Press: New, York, NY, USA, 2005. [Google Scholar]
- Mackenzie, J.D. Structure and properties of Ormosils. JSST 1994, 2, 81–86. [Google Scholar] [CrossRef]
- Compoint, F.; Fall, D.; Piombini, H.; Belleville, P.; Montouillout, Y.; Duquennoy, M.; Ouaftouh, M.; Jenot, F.; Piwakowski, B.; Sanchez, C. Sol-gel-processed hybrid silica-PDMS layers for the optics of high-power laser flux systems. J. Mater Sci. 2016, 51, 5031–5045. [Google Scholar] [CrossRef]
- Fall, D.; Compoint, F.; Duquennoy, M.; Piombini, H.; Ouaftouh, M.; Jenot, F.; Piwakowski, B.; Belleville, P.; Ambard, C. Surface acoustic wave characterization of optical sol-gel thin layers. Ultrasonics 2016, 68, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Guediche, A.; Compoint, F.; Boscher, C.; Stélian, C.; Piombini, H. Indentation hardness and scratch tests for thin layers by sol-gel process. Thin Solid Film 2021, 724, 138618. [Google Scholar] [CrossRef]
- Mackenzie, J.D.; Huang, Q.; Iwamoto, T. Mechanical properties of ormosils. JSST 1996, 7, 151–161. [Google Scholar] [CrossRef]
- Avice, J.; Boscher, C.; Vaudel, G.; Brotons, G.; Juvé, V.; Edely, M.; Méthivier, C.; Gusev, V.E.; Belleville, P.; Piombini, H.; et al. Controlling the Nanocontact Nature and the Mechanical Properties of a Silica Nanoparticle Assembly. J. Phys. Chem. C 2017, 121, 23769–23776. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Chou, K.S. Studies on the spin coating process of silica films. Ceram. Int. 2003, 29, 485–493. [Google Scholar] [CrossRef]
- Piombini, H.; Voarino, P. Apparatus designed for very accurate measurement of the optical reflection. Appl. Opt. 2007, 46, 8609–8618. [Google Scholar] [CrossRef]
- Voarino, P.; Piombini, H.; Sabary, F.; Marteau, D.; Dubard, J.; Hameury, J.; Filtz, J.R. High-accuracy measurements of the normal specular reflectance. Appl. Opt. 2008, 47, C303–C309. [Google Scholar] [CrossRef] [PubMed]
- Piombini, H. Estimation of phase shifts linked only to the coating for a dielectric mirror. Appl. Opt. 2011, 50, C441–C448. [Google Scholar] [CrossRef]
- Tikhonov, E.A.; Lyamets, A.K. Refractometry of birefringent materials at Brewster angle. Indian J. Physiother. Occup. Ther. 2019, 5, 1–3. [Google Scholar]
- RC2 Ellipsometer. Available online: https://www.jawoollam.com/products/rc2-ellipsometer (accessed on 15 February 2022).
- Woollam, J.A.; Johs, B.D.; Herzinger, C.M.; Hilfiker, J.N.; Synowicki, R.A.; Bungay, C.L. Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications. In Proceedings of the SPIE 10294 of Optical Metrology: A Critical Review, Denver, CO, USA, 19 July 1999. [Google Scholar]
- Grosset-Grange, C.; Barnier, J.N.; Chappuis, C.; Cortey, H. Conceptual design for the LMJ-cavity deformable mirror (M1) and optical specification. In Proceedings of the SPIE 6584 of Adaptive Optics for Laser Systems and Other Applications, Prague, Czech Republic, 23 April 2007. [Google Scholar]
- Abelès, F. La théorie générale des couches minces. J. Phys. Radium 1950, 11, 307–309. [Google Scholar] [CrossRef]
- Macleod, H.A. Thin-Film Optical Filters, 5th ed.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2018. [Google Scholar]
- Politano, G.G.; Vena, C.; Desiderio, G.; Versace, C. Variable Angle Spectroscopic Ellipsometry Characterization of Reduced Graphene Oxide Stabilized with Poly(Sodium 4-Styrenesulfonate). Coatings 2020, 10, 743. [Google Scholar] [CrossRef]
- Sirjita, E.N.; Rusen, L.; Brajnicov, S.; Craciun, C.; Ion, V.; Filipescu, M.; Dinescu, M. Properties of Hafnium and Aluminium Silicates Coatings Obtained by PLD. Coatings 2021, 11, 753. [Google Scholar] [CrossRef]
- Zhao, Y.; Sheng, M.; Zheng, Y.; Chen, L. Accurate analysis of ellipsometric data for thick transparent films. Chin. Opt. Lett. 2011, 9, 051003. [Google Scholar]
- Avice, J.; Boscher, C.; Voarino, P.; Brotons, G.; Piombini, H. Quantitative estimation of crazing in sol-gel layers by automated optical microscopy analysis. Opt. Express 2017, 25, 28851–28869. [Google Scholar] [CrossRef]
- Bertussi, B.; Piombini, H.; Damiani, D.; Pommiès, M.; Le Borgne, X.; Plessis, D. SOCRATE: An optical bench dedicated to the understanding and improvement of a laser conditioning process. Appl. Opt. 2006, 45, 8506–8516. [Google Scholar] [CrossRef]
- Piombini, H.; Dieudonné, X.; Wood, T.; Flory, F. Guided Wave Measurements for Characterization of Sol–Gel Layers. Opt. Rev. 2013, 20, 426–432. [Google Scholar] [CrossRef]
- Piombini, H.; Compoint, F.; Ambard, C.; Picart, D.; Belleville, P.; Damamme, G.; Brémand, F. Stress measurement of elastic sol-gel layer by photoelasticimetry—Comparison with Stoney. Opt. Mater Express 2016, 6, 469–485. [Google Scholar] [CrossRef]
- Huang, H.H.; Orler, B.; Wilkes, G.L. Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules 1987, 20, 1322–1330. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- SCHOTT. Data Sheet SCHOTT N-BK7® 517642.251. Datasheet. Available online: https://www.schott.com/shop/advanced-optics/en/Optical-Glass/SCHOTT-N-BK7/c/glass-SCHOTT%20N-BK7® (accessed on 20 December 2022).
- Wu, Z.; Walish, J.; Nolte, A.; Zhai, L.; Cohen, R.E.; Rubner, M.F. Deformable antireflection coatings from polymer and nanoparticle multilayers. Adv. Mater. 2006, 18, 2699–2702. [Google Scholar] [CrossRef]
Material | Silica | BK7 | ||
---|---|---|---|---|
Brewster’s Angle | 55.53 | 56.54 | ||
Kλ (633 nm) | 0.112767 | 0.112662 | ||
n (633 nm) | % difference from reference | n (633 nm) | % difference from reference | |
n (633 nm) reference | 1.4571 from Palik [48] | 0% | 1.5150 from supplier [49] | 0% |
n (633 nm) RC2 | 1.4576 | 0.03% | 1.5149 | 0.01% |
n (633 nm) homemade | 1.4566 | 0.03% | 1.5131 | 0.12% |
Gap | −0.1% < m < 0.1% | −0.2% < m < 0.2% | −0.3% < m < 0.3% | −0.5% < m < 0.5% |
---|---|---|---|---|
% on Measured Surface Silica Inside the Gap | 76.6 | 88.1 | 94.5 | 99.3 |
Time | Average Deviation from the Initial Map 0 | Associated Thickness Decrease |
---|---|---|
Day 0 | 0% | 0 nm |
Day 11 | 7.16% | 13.3 nm |
Day 21 | 10.96% | 19.7 nm |
Day 38 | 17.23% | 29.8 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillot, O.; Guediche, A.; Lafarie, M.; Moiny, A.; Brockhouse, T.; Piombini, H. Transparent Films Thickness Mapping Highlighting the Viscosity Effect of Elastic Layers Made by Sol–Gel Process with an In-House Ellipsometer. Coatings 2023, 13, 633. https://doi.org/10.3390/coatings13030633
Guillot O, Guediche A, Lafarie M, Moiny A, Brockhouse T, Piombini H. Transparent Films Thickness Mapping Highlighting the Viscosity Effect of Elastic Layers Made by Sol–Gel Process with an In-House Ellipsometer. Coatings. 2023; 13(3):633. https://doi.org/10.3390/coatings13030633
Chicago/Turabian StyleGuillot, Océane, Amira Guediche, Mathieu Lafarie, Amandine Moiny, Théo Brockhouse, and Hervé Piombini. 2023. "Transparent Films Thickness Mapping Highlighting the Viscosity Effect of Elastic Layers Made by Sol–Gel Process with an In-House Ellipsometer" Coatings 13, no. 3: 633. https://doi.org/10.3390/coatings13030633
APA StyleGuillot, O., Guediche, A., Lafarie, M., Moiny, A., Brockhouse, T., & Piombini, H. (2023). Transparent Films Thickness Mapping Highlighting the Viscosity Effect of Elastic Layers Made by Sol–Gel Process with an In-House Ellipsometer. Coatings, 13(3), 633. https://doi.org/10.3390/coatings13030633